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Chapter 1

Polarization of the Cosmic Microwave

Background

1.1 Introduction

Recent measurements of the spatial temperature anisotropy of the cosmic microwave background
radiation (CMB) suggest that the ΛCDM cosmological model accurately describes the evolution
of our universe (Figure 1.1). Assuming this model, a distinct spatial polarization pattern should
appear across the sky in the CMB arising from physical mechanisms that operated in the early
universe [1]. This Ph.D. thesis is centered on MAXIPOL, a bolometric, balloon-borne experiment
designed to detect the curl-free component of the CMB polarization field on angular scales of
10′ to 2◦; polarimetric observations were made near the peak of the 2.7 K blackbody spectrum
at 140 GHz [2]. To date two of MAXIPOL’s contemporaries, DASI and WMAP, have detected
polarization in the CMB at frequencies between 23 and 94 GHz with HEMT based observations
made from the South Pole and the Earth-Sun L2 Lagrange point, respectively. The MAXIPOL
observations complement DASI and WMAP in polarimeter technology and frequency coverage. In
all cases, state-of-the-art receivers are sensitive enough to simply detect the small partially polarized
signal – not fully characterize it. A precise characterization of the CMB polarization anisotropy
will provide the energy scale of inflation or meaningful limits thereof and the values of a collection
of cosmological parameters. MAXIPOL represents a first step toward this scientific end acting as
a pioneering experiment and a test bed for millimeter-wave polarimeter technologies that may be
used by the next generation of experiments aiming to fully characterize the anticipated polarized
signals.
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Figure 1.1: Measurements of the temperature anisotropy of the CMB. The colored points represent measurements
associated with the Observational Cosmology Group at the University of Minnesota made by the MAXIMA and
Archeops experiments [4, 6, 7]. The black points and curve are the WMAP measurements and best fit ΛCDM
cosmological model, respectively [8]. These WMAP measurements suggest Ωb = 0.044, Ωm = 0.27, ΩΛ = 0.73 and
Ωtot = 1. Note the hybrid x-axis used to elucidate the low ` and high ` measurements on the same plot [9].

CMB polarization science is reviewed in Chapter 1. The details of the MAXIPOL instrument are
discussed in Chapter 2 with polarimeter specifics in Chapter 3. A record of MAXIPOL observations
is presented in Chapter 4, while subsequent data analysis details are outlined in Chapter 5. Future
work centered on the B-mode instrument design that the author will undertake as a PPARC and
NSF IRFP Fellow at the University of Wales, Cardiff is covered in Chapter 6.

1.2 Scientific Motivation

When the universe was ∼380,000 years old, the ambient photon-baryon plasma that emerged from
the Big Bang had cooled because of expansion to the point where free protons and electrons recom-
bined to form neutral hydrogen. Photons that were once tightly coupled to the free baryons were
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left to stream freely through the universe; photons originating from the surface of last scattering
are observed today across the sky as the CMB. These CMB photons carried with them information
about physical processes that operated in the cosmological fluid at the time of recombination. As
a result, these primordial particles are an invaluable resource that can be used to study the early
universe.

Over the past decade, many experiments have successfully mapped the spatial temperature anisotropy
of the CMB (MAXIMA for example [3, 4, 5, 6], WMAP for state-of-the-art [8]). These measure-
ments suggest that we live in a universe whose evolution is described by adiabatic inflationary
cosmology dominated by cold dark matter and a cosmological constant. Given this fact, the CMB
should be partially linearly polarized with the vector field on the sky consisting of a curl-free (E-
mode) component and a divergence-free (B-mode) component. These separable constituents were
produced by the same physical mechanism – Thomson scattering – but distinctly different pro-
cesses in the early universe. The E-mode component was predominantly produced by bulk motion
in the primordial plasma, which was driven by baryons gravitationally falling into the dark matter
potential wells that were setup by scalar perturbations; the B-mode component was produced by
tensor perturbations arising from gravity waves generated during inflation.

To date, the E-mode polarization anisotropy has been detected by DASI [10] but not fully char-
acterized, the temperature-E-mode cross-correlation (TE) has been measured by WMAP [11] and
the anticipated B-mode polarization anisotropy signal remains undetected – and lies at our techno-
logical horizon. The E-mode and B-mode signals are elusive because they are faint. The E-mode
polarization anisotropy was detected on the order of one part in 106 – a factor of ∼10 below the
temperature anisotropy signal [10]. The primordial B-mode signal is predicted to be a factor of
∼10 or more below the E-mode signal.

The blackbody temperature of the CMB is highly isotropic across the entire sky with primordial
anisotropy appearing at the level of one part in 105; the horizon size on the surface of last scattering
is ∼1◦ on the sky. This situation presents a fundamental causality problem – how could causally
disconnected points in the early universe have precisely the same temperature? Our current un-
derstanding of the dynamics of the very early universe is theoretical and based on the inflationary
paradigm, which postulates a burst of accelerated expansion shortly after the Big Bang. During
inflation, the scale size expanded through many e-foldings thereby dilating quantum fluctuations
in the inflaton field to the macroscopic scales responsible for seeding large-scale structure in the
universe and forcing the geometry of the universe to be flat. This evolution solves the horizon
problem because causally disconnect points at last scattering were causally connected prior to the
inflationary epoch.
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The universe we observe today suggests inflation occurred. However, the precise time, or energy
scale, at which it occurred is unknown and variable in the theory; a measurement is required to
accurately constrain the inflationary epoch. To date, particle physics experiments are more than
twelve orders of magnitude away from accessing the energy scales required to provide this constraint.
Different inflationary models with different energy scales predict different ratios of tensor and scalar
perturbations in the primordial plasma. If the energy scale of inflation lies between 1.1 × 1015 GeV
and 2.6 × 1016 Gev [15, 12, 13, 14] then CMB polarization anisotropy experiments sensitive enough
to measure both the E-mode and primordial B-mode power spectra will measure the tensor-to-scalar
ratio and therefore the energy scale of inflation.

Figure 1.2 shows the temperature anisotropy, E-mode and B-mode polarization anisotropy power
spectra computed using the WMAP ΛCDM cosmology with Ωb = 0.044, Ωc = 0.226, ΩΛ = 0.73,
τ = 0.17 and ns = 0.93 [8, 16]. Over plotted is a predicted foreground signal: a non-primordial
B-mode polarization anisotropy produced by the gravitational lensing of partially polarized CMB
radiation as it passed by clusters of galaxies. For all solid curves, we assume the quadrupole tensor-
to-scalar ratio, r = 0.1. The broad blue region illustrates the range of inflationary energy scales
future B-mode experiments can probe: 1.1 × 1015 GeV to 2.6 × 1016 Gev. These energy scales
correspond to rmin ∼ 10−6 and rmax = 0.3 given the expression

(V ∗)1/4/mpl = 3.0× 10−3r1/4 (1.1)

where mpl = 1.2 × 1019 GeV and r ≡ 〈
Q2

T

〉
/

〈
Q2

S

〉
[12]. This range in energy scales is set by the

current upper limit for r and the ability to cleanly separate the primordial and non-primordial
B-mode signals using current data analysis techniques.

A full characterization of the E-mode polarization anisotropy power spectrum will benefit cosmol-
ogy in several ways. If the signal appears as predicted, the result will further buttress the adiabatic
inflationary paradigm by verifying the cosmological origin of the temperature anisotropy. In addi-
tion, we will ascertain the values of a collection of cosmological parameters to high accuracy which
will strengthen the existing constraints and because the polarization anisotropy measurements are
independent, break existing degeneracies between cosmological parameters.

If inflation results from Grand Unified Theory (GUT) physics, the B-mode signal amplitude should
be in the range 1 to 100 nK, a few percent or less of the total polarization and some 80 dB fainter
than the 2.7 K background. What is clear is that in order to fully explore all the CMB has
to offer, we must build receivers with unprecedented sensitivities and, depending on the energy
scale of inflation, we may need to develop techniques for cleanly separating the primordial and
non-primordial B-mode signals.

MAXIPOL aims to simply detect the peaks of the E-mode curve in Figure 1.2. Toward this end,



5

Figure 1.2: Theoretical temperature anisotropy, and E-mode, primordial B-mode and non-primordial B-mode
polarization anisotropy power spectra for a ΛCDM universe with Ωb = 0.044, Ωm = 0.27, ΩΛ = 0.73, τ = 0.17 and
r = 0.1. The broad blue region illustrates the range of inflationary energy scales future B-mode experiments can
probe (see Section 1.2) [16].

a data set was collected in May 2003 and as of July 2004, preliminary maps have been produced
(see Figure 1.3). The algorithm used to compute these maps will be discussed in Chapter 5.
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Figure 1.3: Preliminary MAXIPOL T , Q and U sky maps of the region surrounding Beta Ursae Minoris (Chapter 5).



Chapter 2

The MAXIPOL Instrument

2.1 Introduction

The MAXIPOL instrument is a reimplementation of the hardware from the successful CMB tem-
perature anisotropy experiment MAXIMA [3, 4, 5, 6]. While the MAXIMA telescope and data elec-
tronics remained largely unchanged, the receiver was converted into a polarimeter by retrofitting
it with a rotating half-wave plate (HWP) and a fixed wire-grid polarizer. MAXIPOL was launched
twice from NASA’s National Scientific Ballooning Facility in Ft. Sumner, New Mexico. The first
flight, MAXIPOL-0, took place in September 2002 and the second, MAXIPOL-1, in May 2003.
The goal of MAXIPOL is to measure the peaks in the E-mode (EE) and temperature-E-mode (TE)
cross correlation power spectra between `=300 and `=1000 (Figure 2.1). To accomplish this goal,
MAXIPOL mapped the I, Q and U Stokes parameters of 2◦ wide “bow tie” shaped regions of the
sky with 10′ resolution.

2.2 Instrument Description

Many subsystems in the MAXIPOL instrument have already been thoroughly detailed in previ-
ous MAXIMA publications [3, 17, 19, 20, 18]. This discussion will focus primarily on the new
MAXIPOL-specific hardware elements that were retrofitted into the MAXIMA instrument.

7
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Figure 2.1: Theoretical EE and TE power spectra computed with the MAXIMA-1 best fit cosmological parameters.
The current measurements from DASI and WMAP are overplotted. MAXIPOL aims to to measure the peaks in
these power spectra between `=300 and `=1000.

2.2.1 Overview

MAXIPOL employs a three mirror, f/1 Gregorian telescope with a 1.3 m off-axis parabolic pri-
mary mirror. The elliptical secondary and tertiary reimaging mirrors (21 and 18 cm in diameter,
respectively) are held at liquid helium temperatures inside the receiver to reduce radiative loading
on the bolometers. To keep the instrumental polarization properties of the telescope constant, all
telescope mirrors are fixed with respect to each other for all observations.1

Light from the sky is reimaged to a 4 × 4 array of horns at the focal plane. Observations are made
in bands centered on 140 GHz and 420 GHz (∆ν ' 30 GHz). The twelve 140 GHz photometers are
optimized to measure the CMB and the four 420 GHz photometers are used to monitor foreground
dust contamination. The 10′ FWHM Gaussian beam shape for the 140 GHz photometers is defined

1The primary mirror was chopped in azimuth during MAXIMA observations.
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Figure 2.2: A cross-sectional view of the MAXIPOL receiver (Section 2.2).

by a smooth walled, single-mode conical horn and a cold Lyot stop; the 420 GHz photometers
employ multi-mode Winston horns. The bolometers are maintained at 100 mK by an adiabatic
demagnetization refrigerator [24] and a 300 mK 3He refrigerator. A photograph of the focal plane
and a cross-sectional view of the inside of the cryostat is shown in Figure 2.2. For reference, the
HWP and wire-grid polarizer that will be discussed in Section 2.2.2 are mounted near the Lyot
stop and at the focal plane, respectively.

The telescope was focused before flight by mapping the detector beams with a chopped, 100 Watt
halogen filament imaged at infinity by a 38 inch on-axis parabolic mirror. In addition, the tele-
scope sidelobe performance was ascertained by measuring the bolometer response from a chopped,
polarized 150 GHz source positioned about the telescope in azimuth and elevation (Figure 2.3). An
absorptive, 0.75 inch thick plug of Eccosorb MF110 was inserted in the optical path at the inter-
mediate focus of the telescope to attenuate the intensity of warm loads during lab measurements.
This attenuator was anti-reflection (AR) coated with a 0.015 inch thick sheet of etched Teflon. The
calculated transmission was ∼1% at 140 GHz [23].
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Figure 2.3: A measurement of the sidelobe performance of the MAXIPOL instrument. For this measurement, the
amplitude of the bolometer response from a chopped linearly polarized 150 GHz source was measured with a lock-in
amplifier. The HWP was not rotating for this test and its orientation was arbitrarily set. Data was collected for
two orthogonal orientations of the source – one parallel to the transmission axis of the focal plane polarizer and one
perpendicular. For the elevation measurements, the sorce was positioned at an elevation of 32◦. For the azimuth
measurements, the source was on the ground at an elevation of 0◦ and the the telsecope was pointed at an elevation
of 19.2◦. All data were collected with the instrument out in the open on the launch pad at the NSBF in Ft. Sumner,
New Mexico to avoid spurious signals from reflections off of buildings or other structures. All data were normalized
to the maximum value in the data set. The 90 dB range was possible because of tunable attenuators on the source.

A schematic of the MAXIPOL instrument can be seen in Figure 2.4. This illustration shows
the payload without sun shielding so the telescope, receiver and attitude control subsystems are
visible. Before flight, sun shielding was installed to protect all subsystems from solar radiation
during daytime observations and to shield the telescope and receiver from spurious signals caused
by sunlight and RF transmitters. The baffling was made of Celotex aluminized foam sheeting and
was painted white on all Sun and Earth-facing surfaces. We selected a white paint pigmented with
TiO2 because this material has low solar absorptivity (∼10%) and high infrared emissivity (∼90%)
– a combination that compensated for the loss of convective cooling in the low-pressure balloon
environment by providing adequate radiative cooling. This sun shield design successfully maintained
all instrument subsystems within nominal temperature specifications during the daytime portion
of the flight. A large aluminum ground shield (also not illustrated) was mounted to the inner frame
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to shield the main beam of the telescope from terrestrial emission.

Telescope attitude was feedback controlled. The flywheel mounted at the top of the gondola moved
the telescope in azimuth while the elevation angle was adjusted with a linear actuator arm that
nodded the entire inner frame. A second motor mounted at the very top of the gondola further
assisted in moving the telescope in azimuth by torquing the payload against the balloon cabling.
The azimuth feedback-loop relied on gyros and a magnetometer and the elevation feedback relied on
a 16-bit optical encoder. The magnetometer was calibrated before flight; the offset was measured
to within a degree and the non-linearity was mapped and stored in a lookup table that was used by
the on-board pointing computer during flight for making fine corrections. A second lookup table
was also implemented to account for variations in the magnetic field of the Earth as a function of
longitude and latitude.

Pointing reconstruction for data analysis relies on the position of a reference star in one of two
boresight Cohu 4910 CCD cameras. The camera used during daytime observations was filtered
with a 695 nm Schott glass filter and fitted with a 500 mm Promaster Spectrum 7 reflective lens
that provided a 0.72◦ by 0.55◦ field-of-view; the unfiltered nighttime camera used a 50 mm Fujinon
lens that provided a 7.17◦ by 5.50◦ field-of-view. Pixel size for the daytime and nighttime cameras
was 0.084′ by 0.069′ and 0.84′ by 0.69′, respectively. The small field-of-view and the filter on the
daytime camera were necessary to improve the ratio of star to sky brightness. With the combination,
we detected stars of apparent visual magnitude 2 at balloon altitude. The two cameras and the
telescope were aligned before flight to within a quarter of a degree.

Bolometer data and housekeeping signals were multiplexed into a single data stream that was
telemetered to fixed ground stations during flight. These signals were monitored in real time to
ensure nominal operation of the instrument and because the cryogenic system needed to be manually
cycled.

A new on-board data recorder was added to the experiment for the MAXIPOL-1 flight after a
NASA data transmitter failed during MAXIPOL-0. The data recorder, which was custom designed
and built by the Weizmann Institute of Science in Israel, consists of NIM modules each containing
an Altera FPGA chip and up to 128 Intel 16 MB flash memory chips. With an uncompressed serial
data rate of 160 kbps each module is capable of storing 28.4 hours of data. Individual modules
can be daisy-chained to each other to increase the total recording capacity. The FPGA chip reads
the incoming data stream and when it detects a pre-programmed frame structure it controls the
storage of the data on the memory chips. It also controls the post-flight export of the data from
the memory chips into a computer through a standard parallel port. Power consumption during
steady-state data recording is less than 0.25 Watt (at 5 V), and modules that are idle require only



12

Flywheel

Elevation

   Pivot

Polarimetric

       Receiver

1.3 m Primary Mirror

Attitude

Electronics

10’ Beams

To Balloon

         Data

Electronics

MAXIPOL Instrument

Figure 2.4: The MAXIPOL instrument without baffling (Section 2.2).



13

time

V
ol

ts

detector output

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

wire grid polarizer

detector

horn

Polarized light from the sky

Polarization vector rotates at 2fo [Hz]

HWP rotates at fo [Hz] Only Py is transmitted

P

P

Py

x

P

Figure 2.5: The polarimeter strategy employed by MAXIPOL (Section 2.2.2).

about 0.05 Watt. For MAXIPOL-1 two modules containing 96 memory chips provided a total
recording capacity of 42.6 hours. Approximately 28 hours of pre-flight, ascent and at-float data
were recorded.

2.2.2 Polarimeter Strategy

MAXIPOL analyzed the polarization of the millimeter-wave sky with a rotating HWP and fixed
wire-grid polarizer. While this technique is a well-known standard in astronomy, it is the first
implementation in a CMB experiment. The strategy is illustrated in Figure 2.5.

Monochromatic linearly polarized light that passes through a HWP rotating at a frequency f0

emerges linearly polarized with its orientation rotating at 2f0. If this light then propagates through
a fixed polarizer and its intensity is subsequently measured, the resulting data stream will exhibit
sinusoidal modulation at 4f0. The amplitude of this modulation depends on the level of polarization
of the incident radiation. Perfectly polarized light will maximize the amplitude and perfectly
unpolarized light will yield no modulation.

The advantage of HWP polarimetry is that each detector in the array makes an independent
measurement of the Stokes parameters of the incoming radiation. In addition, this technique
rejects systematic errors. Spatial polarization variations on the sky translate to temporal amplitude
variations in the 4f0 signal because the telescope is scanning. Therefore, the polarization anisotropy
data will reside in the sidebands of the 4f0 signal in Fourier space. Any spurious or systematic
signals appearing in the data stream outside of this 4f0 frequency band can be filtered away with
software during data analysis (see Section 2.3).
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Figure 2.6: A lab measurement of a polarized load. The setup for this measurement is described in Section 2.2.2
and a more detailed discussion is presented in Section 3.3. The solid curve plotted is the best fit model comprised of
nf0 sine waves where n = 1, 2, . . . , 8; the seventeen free parameters used in the fit include the amplitude and phase
of each sine wave and an overall offset. For this model, χ2 = 2.04 for 45-17 degrees of freedom. The data minus
the best fit model is plotted in the bottom panel to elucidate the measurement error. From the fit parameters, we
calculated the polarimeter efficiency to be 89%.

The HWP is inherently a monochromatic device so the behavior described above applies only to
the frequencies ν = mc/2t∆n where ∆n is the difference between the ordinary and extraordinary
indicies of refraction in the birefringent crystal, t is the propagation length through the crystal, m

is an odd integer and c is the speed of light. Linearly polarized light at other frequencies emerges
from the crystal elliptically polarized. We calculated the HWP thickness that would minimize the
fraction of elliptically polarized intensity and thereby optimize the overall polarimeter efficiency.
To do this, we found the maximum of the product of the expected efficiencies for the 140 and 420
GHz photometers as a function of crystal thickness. These expected efficiency curves incorporated
the spectral breadth of the photometers and the convergence of rays as they propagate through the
HWP. The HWP design that resulted from this calculation is discussed in Section 2.2.3.

To ascertain the polarimeter efficiency, a polarized load was analyzed in the lab before flight. For
this measurement, a wire-grid polarizer was mounted on the cryostat window with its transmission
axis oriented parallel to that of the focal plane polarizer. Thermal radiation from a 273 K ice
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bath was chopped at ∼6.5 Hz with a 300 K aluminum chopper blade covered with 0.25 inch thick
Eccosorb LS-14 foam. The HWP was then discretely stepped by hand in ∼5◦ intervals. Twenty
seconds of data were collected at each HWP orientation. The amplitude of the chopped signal in
the bolometer time stream for one typical photometer was measured with a software lock-in analysis
and then plotted in Figure 2.6. A nine parameter model consisting of sine waves for the first eight
harmonics of f0 was then fit to the data (solid curve); fit parameters included the amplitudes and
phases of each sine wave and an overall offset. The level of polarization was then calculated from
the fit parameters using the standard definition P = (Amax − Amin)/(Amax + Amin) where A is
the amplitude of the 4fo signal. This calibrated load was measured to be 86% polarized. This
corresponds to an overall polarimeter efficiency of 89% which is in agreement with predictions that
take into account the HWP thickness, the known spectral response of the 140 GHz photometers,
the convergence of rays at the aperature stop of the telescope and the wire-grid polarizer efficiency
(more details in Section 3.3).

Incident unpolarized light can become partially polarized inside the instrument if it reflects off
of the telescope mirrors at oblique angles. In addition, emission from the mirrors may also be
partially polarized. To assess the level of instrumental polarization the procedure outlined above
was repeated with unpolarized light. We found the instrumental polarization to be 1% for a typical
140 GHz channel.

2.2.3 Half-Wave Plate and Wire-Grid Polarizer

The 3.4 mm thick A-cut sapphire HWP was AR coated with a 0.013 inch thick wafer of Herasil
to maximize transmission. The Herasil was bonded to the sapphire with Eccobond 24, an unfilled,
low viscosity epoxy that was used to achieve glue layers as thin as 0.0005 inches. For MAXIPOL-0
we AR coated the HWP with a 0.010 inch thick layer of Stycast 2850FT. The switch from Stycast
to Herasil was made because Herasil thermally contracts in a way that is more compatible with
sapphire.

Since the AR coating was not birefringent, the two incident polarization orientations had different
coefficients of reflection; this differential reflection gave rise to a rotation synchronous signal at a
frequency of 2f0. To minimize this effect, we calculated the AR coating thickness that would mini-
mize the difference in reflection coefficients given the spectral breadth of the 140 GHz photometers,
the thickness of the eccobond 24 layer and the oblique incidence of rays. Because the 2f0 signal
resides out of the polarization signal bandwith around 4f0 it is not a source of systematic error (see
Section 2.3).
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The focal plane wire-grid polarizer, made by Buckbee-Mears, was constructed from electroformed
0.0002 inch diameter gold wires bonded to 0.0015 inch thick Mylar film at 250 lines per inch. This
flexible material was mounted to a rigid “roof-shaped” frame that was positioned over the horn
openings. This “roof-shaped” polarizer reflected the unwanted polarization orientation out of the
optical path and into blocks of millimeter-wave absorbing material [25] mounted on either side of
the focal plane. This design reduced spurious signals due to reflections.

2.2.4 HWP Drivetrain

The HWP rotated at ∼2 Hz during both MAXIPOL flights. This speed was selected because
it provided eight measurements of the of Stokes parameters for one beam resolution element per
scan period while avoiding any significant 4f0 signal attenuation from the ∼10 ms bolometer time
constant. During operation, this rotation speed proved to be vibrationally gentle; it did not excite
any detectable microphonic signals in the bolometer data.

The HWP was center turned near the Lyot stop of the telescope by a 0.078 inch diameter drive-
shaft (see Figure 2.7). This driveshaft penetrated the tertiary mirror and the cryostat shell and
was turned through a low-temperature ferrofluid rotary vacuum feedthrough (Ferrofluidics FE51-
122190A) by a feedback controlled Kollmorgen U9M4 Servo Disc DC motor with high-altitude
brushes mounted outside the receiver. The orientation of the motor shaft, and therefore the HWP,
was measured with a 16-bit Gurley A25S optical encoder.

The HWP was held in place near the Lyot stop with a Rulon-J sleeve bearing embedded in a 0.4
inch thick disk of Zote foam. A sapphire bearing was used in MAXIPOL-0 but was later found
to exhibit less favorable vibrational properties. This foam disk was mounted in the optical path
perpendicular to the chief ray. A polished, hardened-steel sewing needle was passed through a
center drilled hole in the HWP; the assembly resembled a toy top. One end of the needle was
slipped into the Rulon-J sleeve and the other end was rigidly coupled to the driveshaft with 907
epoxy.

The driveshaft had three main parts. Between the HWP and the tertiary mirror, the driveshaft
was made of thin wall G10 tubing (wall thickness ' 0.005 in). The thin fiberglass G10 material
minimized both the thermal load on the HWP and the optical cross-section of the exposed drive-
shaft, while retaining the desired torsional driveshaft stiffness. A bearing assembly was mounted
at the back of the tertiary mirror to act as a thermal intercept and to provided necessary mechan-
ical stability for the driveshaft. The bearing was made of Rulon-J (Vespel SP3) for MAXIPOL-1
(MAXIPOL-0). Inside this bearing, the driveshaft was made of polished steel, sputter coated
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Figure 2.8: A software lock-in analysis of five minutes of MAXIPOL-0 data (See the discussion in Section 2.3).

with MoS2; the shaft material was cromoly steel (titanium nitride coated tungsten carbide) for
MAXIPOL-1 (MAXIPOL-0). Between the tertiary mirror and the rotary vacuum feedthrough at
the cryostat shell the driveshaft was again made of G10 tubing to minimize the thermal load on
the HWP and the liquid helium bath.

Laboratory testing was carried out to test the vibrational properties of the drivetrain assembly
at liquid helium temperatures. A mock-up of the drivetrain was constructed and installed in a
liquid helium cryostat. With this setup, two bearing materials, Rulon-J and Vespel SP3, were
studied with microphones mounted near the bearings inside the cryostat. Rulon-J was chosen as
the flight drivetrain bearing material because of the low noise performance it exhibited over several
consecutive days of testing.
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2.3 Flight Performance

The purpose of this section is to demonstrate the viability of the instrument. Five minutes of
MAXIPOL-0 time stream data from one 140 GHz photometer are plotted in the upper left panel of
Figure 2.8. When this data is replotted versus HWP angle, the systematic offsets become apparent
(upper right panel).

Plotted in the lower left panel is the power spectrum of this data set. The first peak appears
at f0 and the subsequent peaks appear at the harmonics of f0. Laboratory measurements show
that the source of the f0 signal is predominantly thermal emission from the G10 drivetrain. This
thermal emission signal contributes at all harmonics in the plot though it is subdominant in the
2f0 and 4f0 peaks. The dominant 2f0 signal comes from the differential reflection effect discussed
in Section 2.2.3; the dominant 4f0 signal comes from the instrumental polarization signal discussed
in Section 2.2.2.

As discussed in Section 2.2.2, polarization anisotropy measurements will appear in the sidebands of
the 4f0 signal. If the amplitude of the systematic offset at 4f0 varies, this modulation may mimic
polarization signals from the sky. To measure its stability, we lock-in on the 4f0 offset with software
using a reference created from the HWP optical encoder data stream. The time dependence of the
locked-in data provides a measure of the stability of the amplitude of the 4f0 offset. The power
spectrum of this locked-in data is plotted in the lower right panel of Figure 2.8. In the bandwidth of
interest spanning 0 to 1.5 Hz we recovered the nominal instrument noise level of ∼10 nVrms/

√
Hz;

this bandwith was set by the scan speed of the telescope, the beam size and the angular size of the
expected structure on the sky (Section 5.3). We therefore conclude that variations in the known
systematic offsets will contribute less than the detector noise to the the MAXIPOL data.



Chapter 3

Polarimeter

In this chapter we discuss the MAXIPOL polarimeter. Sections 3.1 & 3.2 are devoted to pre-
senting the theoretical framework used to design and model the performance of the instrument. In
Section 3.3 we compare this theoretical performance to a preflight measurement made in May 2003.

For total power detectors it is most convenient to use the Mueller matrix formalism for calculations.
In this formalism, the behavior of optical elements is described by a 4×4 Mueller matrix and the
signal propagating through the optical system is described by a 4 element Stokes vector

~S = [I, Q, U, V ] (3.1)

with

I = 〈E2
x〉+ 〈E2

y〉 (3.2)

Q = 〈E2
x〉 − 〈E2

y〉 (3.3)

U = 〈ExEy cos(φ)〉 (3.4)

V = 〈ExEy sin(φ)〉 (3.5)

Ex and Ey are the amplitudes of the electric field in the x and y directions, respectively, φ is the
phase difference between Ex and Ey and the brackets indicate time averaging. I describes the total
intensity of the radiation while Q, U and V describe the polarized intensity. For linearly polarized
light, V = 0 and Q and U are the parameters of interest. Note: the CMB community commonly
refers to I as T because intensity is commonly quoted in brightness T emperature units. To be clear,
I will mark Stokes vectors with a →, Muller matrices with a ∧ and scalars will have no symbol.

Figure 3.1 is a schematic representation of the optical elements in the MAXIPOL instrument.
To fully model the experiment, one must ascertain the Mueller matrix for each element. The

20
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Figure 3.1: Schematic of the optical elements in the MAXIPOL instrument.
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heart of the polarimeter is the HWP and the wire-grid polarizer. Before proceeding to the more
complicated task of deriving the theoretical behavior of the system, we will present the calculations
used to design the MAXIPOL HWP. In this chapter we will explore in detail the impact the HWP
and wire-grid polarizer has on the polarimeter data stream but stop short of fully modeling the
entire optical system.

3.1 HWP Design

The Mueller matrix for a homogeneous nonlinear retarder can be written

M̂h =




1 0 0 0
0 d2 − e2 − f2 + g2 2(de + fg) −2(df + eg)
0 2(de− fg) e2 − f2 − d2 + g2 2(dg − ef)
0 −2(df − eg) −2(dg + ef) g2 + f2 − d2 − e2




(3.6)

with the matrix elements defined as

d = Qe sin(δ/2)

e = Ue sin(δ/2)

f = Ve sin(δ/2)

g = cos(δ/2)

This expression is completely general and can be simplified assuming MAXIPOL-specific con-
straints, namely Qe = cos(2ρ), Ue = sin(2ρ) and Ve = 0 which is true for the retarders we use [21].
Here ρ is the orientation angle of the retarder. The parameter

δ =
2mπ t ∆n

λ
(3.7)

where ∆n = |ne − no|, ne and no are the ordinary and extraordinary indicies of refraction, t is the
thickness of the crystal, λ is the free-space wavelength of the electromagnetic wave propagating
through the crystal and m is an odd integer. If δ = mπ then the retarder is a HWP.

Sapphire, MgF2 and quartz were considered as HWP materials for MAXIPOL. Of the three, we
selected sapphire because it has the largest ∆n at 140 GHz and therefore required the smallest t

which was appealing because there was a tight space budget inside the receiver near the aperture
stop where the HWP was mounted. In addition, the mass and moment of inertia of the sapphire
crystal for our requisite dimensions proved to be acceptable given our drivetrain strategy.
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From the literature we know only no = 3.047 for 140 GHz radiation at 5.8 K while at 300 K we know
both no = 3.065 and ne = 3.404 for the same frequency [29, 30]. Combining these measurements
with others made at higher frequencies [31], we extrapolated that ne = 3.361 at liquid helium
temperatures making our ∆n = 0.314. Figure 3.2 shows this extrapolation and gives results for
420 GHz as well.

The penalties associated with using a sapphire HWP include a large overall reflection at the crystal
surfaces resulting from the large indices of refraction, an appreciable differential reflection arising
from the fact that no and ne are significantly different and a non-zero signal attentuation via
absorption. The reflection problems can be managed by using an anti-reflection coating (Section 3.2)
and the absorption effect should not be deleterious. The transmission through the crystal can be
calculated using the expression (

Iout

Iin

)

o,e

= e−αo,et (3.8)

From the literature, αo and αe = 0.05 Neper/cm for 140 GHz radiation at 300 K with ∆α negligible
[30]. αo was measured again by the same author in a different study to be 0.07 Neper/cm for 140
GHz radiation at 300 K and then 0.05 Neeper/cm at 5.8 K [29]. This result suggests that cooling
the HWP improves the transmission by 1%. Considering all measurements, we calculate the signal
loss to absorption to be 2% for the 140 GHz photometers. The 300 K absorption coefficients for 420
GHz radiation are αo = 0.24 and αo = 0.21 [30]; these values suggests we should have a differential
transmission of 1% in this spectral band. A 1% modulation of the 2.7 K sky would be a detectable
signal. However, the 5.8 K measurement of αo only in [29] suggests this absorptive signal vanishes
when the HWP is cooled to 5.8 K.

For a monochromatic experiment one can simply calculate the crystal thickness, t, required to create
a HWP from equation 3.7 once the crystal material and therefore ∆n is selected. MAXIPOL is
not a monochromatic experiment, however, so a slightly more complicated calculation using the
known spectral response of the photometers was needed to ascertain the crystal thickness that
would produce the optimal overall polarimeter performance.

3.1.1 Modeling the Data Stream

The optical system illustrated in Figure 2.5 can be described mathematically as

M̂p2 M̂h
~Sin = ~Sout (3.9)

The signal to be analyzed, ~Sin, can modeled as M̂rM̂p1
~Sload where ~Sload = [1, 0, 0, 0]. This expres-

sion allows ~Sin to have an arbitrary level of linear polarization and an arbitrary orientation. The
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Figure 3.2: Index of refraction of sapphire between 4 and 300 cm−1 at liquid helium temperatures and 300 K.

orientation of ~Sin is set by a rotation matrix, M̂r, which is a purely mathematical construct [22].

M̂r =




1 0 0 0
0 cos(2θ) ± sin(2θ) 0
0 ∓ sin(2θ) cos(2θ) 0
0 0 0 1




(3.10)

The upper sign corresponds to clockwise rotation as observed by the detector and the lower sign,
counter-clockwise rotation. Here the Mueller matrix for a polarizer is written

M̂pi =
1
2




p2
xi

+ p2
yi

p2
xi
− p2

yi
0 0

p2
xi
− p2

yi
p2

xi
+ p2

yi
0 0

0 0 2pxipyi 0
0 0 0 2pxipyi




(3.11)
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with the amplitude attenuation coefficients (p) indexed by i to allow for differentiation between
the source polarizer, M̂p1 , and polarizer at the detector, M̂p2 . It is important to distinguish the
two polarizers because it is not necessarily true that they will embrace the same orientation or
amplitude attenuation coefficients. Using Equation 3.10 and 3.11,

~Sin =
1
2




p2
x1

+ p2
y1

(p2
x1
− p2

y1
) cos(2θ)

(p2
x1
− p2

y1
) sin(2θ)

0




(3.12)

The bolometric detector is only sensitive to the Ith term of ~Sout so the resulting data stream can
be written

~SI
out(ρ, θ, a, δ) = Iout =

1
4
[(p2

x1
+ p2

y1
)(p2

x2
+ p2

y2
)

+ (p2
x1
− p2

y1
)(p2

x2
− p2

y2
) cos(2θ)((1 + cos(4ρ)) sin2(δ/2) + cos2(δ/2))

+ (p2
x1
− p2

y1
)(p2

x2
− p2

y2
) sin(2θ) sin(4ρ) sin2(δ/2)] (3.13)

This equation is messy. In general, the level of polarization can be calculated using the expression

P =

√
Q2 + U2 + V 2

I
(3.14)

Using this expression on the elements of ~Sin, we find

Pin =
p2

x1
− p2

y1

p2
x1

+ p2
y1

(3.15)

and the normalized input Stokes vector becomes

~Sin =




1
Pin cos(2θ)
Pin sin(2θ)

0




(3.16)

Using the normalized ~Sin and assuming px2 = 1 and py2 = 0, Equation 3.13 simplifies to

Iout =
1
2

[ 1 + Pin cos(2θ)
(
cos(4ρ) sin2(δ/2) + cos2(δ/2)

)

+ Pin sin(2θ) sin(4ρ) sin2(δ/2) ] (3.17)
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3.1.2 Determining Pin from Iout

Since total power detectors only measure the Ith element of ~Sout it is impossible to use Equation 3.14
to ascertain Pout. Instead, we use the expression

Pout =
Imax
out − Imin

out

Imax
out + Imin

out

(3.18)

to calculate the level of polarization. This expression will give the same result as Equation 3.14 for
the ideal polarimeter with δ = π. In this limit,

Iout =
1
2

[ Iin + Qin cos(4ρ) + Uin sin(4ρ) ] (3.19)

To find Imax
out and Imin

out we take the partial derivative of Iout with respect to ρ and set it equal to 0.

∂Iout

∂ρ
= 2Uin cos(4ρ)− 2Qin sin(4ρ) = 0 (3.20)

By solving this equation, we find the maxima and minima in the data stream will appear at the
HWP orientation angles

ρmax = 1
4 tan−1

(
Uin
Qin

)
and ρmin = 1

4 tan−1
(

Uin
Qin

)
+ π

4 (3.21)

Substituting Equation 3.21 into Equation 3.19 yields

Imax
out = 1

2

(
Iin +

√
Q2

in + U2
in

)
and Imin

out = 1
2

(
Iin −

√
Q2

in + U2
in

)
(3.22)

Finally, inserting Equation 3.22 into Equation 3.18 yields

Pout =
Imax
out − Imin

out

Imax
out + Imin

out

=

√
Q2

in + U2
in

Iin
= Pin (3.23)

3.1.3 Interpreting Pout Measured by a Non-ideal Polarimeter

Now that we have demonstrated that Equation 3.18 is a tool that can be used to ascertain Pin

given Iout for an ideal polarimeter, we apply the method to the more realistic and slightly more
complicated expression, Equation 3.17, to determine the dependence of Pout on δ. Now we take the
derivative of Equation 3.17, set it equal to zero

∂Iout

∂ρ
= 2Pin sin2(δ/2) [ cos(4ρ) sin(2θ)− sin(4ρ) cos(2θ) ] = 0 (3.24)

and find the complete solution set for ρ to be

tan(4ρ) = tan(2θ) → ρ =
θ

2
+

nπ

4
(3.25)
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The first maxima will appear when n = 0 and the first minima when n = 1. Substituting these ρ

values into Equation 3.17 we find

Imax
out = Iout

(
ρ =

θ

2

)
=

1
2

[
1 + Pin cos(2θ) cos2(δ/2) + Pin sin2(δ/2)

]
(3.26)

Imin
out = Iout

(
ρ =

(
θ

2
+

π

4

))
=

1
2

[
1 + Pin cos(2θ) cos2(δ/2)− Pin sin2(δ/2)

]

Substituting Equation 3.26 into Equation 3.18 yields the expression.

Pout =
Imax
out − Imin

out

Imax
out + Imin

out

=
Pin sin2(δ/2)

1 + Pin cos(2θ) cos2(δ/2)
(3.27)

In the limit were δ = nπ, Pout = Pin. In all other cases Pout 6= Pin and the polarimeter is therefore
inefficient or non-ideal. We conclude that if Equation 3.18 is used on data produced by any real
instrument, the result will contain some systematic error. This error can be accounted for if δ is
known.

Figure 3.3: Average spectra for the 140 and 420 GHz photometers.

In fact, the MAXIPOL photometers have significant spectral breadth so δ is not single valued –
it varies appreciably for one detector element. Figure 3.3 shows the combined spectra for six 140
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GHz and four 420 GHz photometers. These spectra were measured with with a Fourier transform
spectrometer at the University of California, Berkeley when the receiver was used for MAXIMA.
Four additional 140 GHz photometers were added to the receiver for MAXIPOL. The spectra of
these new photometers and the spectra of two inherited MAXIMA photometers have not been
measured. All devices employ identical horns and filters so the performance of the unstudied
photometers is expected to be very similar to the displayed measurements. When computing the
combined spectrum, the individual spectra were normalized to their individual maximum, averaged
together and then this combination was normalized. The 1-σ error in each bin illustrates the
variance in the performace of the photometers at a given frequency. A Gaussian was fit to the
average spectrum using a non-linear least-squares routine with no weighting so each band could be
characterized completely with just two parameters, µ and σ. Clearly this fit is an approximation.

Using the Gaussian fit, Pout becomes

Pout =

1
σx

√
2π

∫ ∞

0
e
−(ν−µx)2

2σ2
x Pin sin2 (δ(ν)/2) dν

1
σx

√
2π

∫ ∞

0
e
−(ν−µx)2

2σ2
x

[
1 + Pin cos(2θ) cos2 (δ(ν)/2)

]
dν

(3.28)

The subscript, x, can be valued 140 or 420. Notice δ is a function of the radiation frequency, ν,
the spectral band term acts as a probability density, appropriately weighting the contribution of
every frequency and the result is a function of crystal thickness, t. To elucidate the behavior of
the solution, we set Pin = 1, θ = 0 and µ and σ to the values gleaned by the Gaussian fits, and
then we solved the integral numerically for the 140 and 420 GHz spectral bands. The results are
plotted in Figure 3.4. The red dash and green dash-dot curves correspond to the solution of the
integral for the 140 and 420 GHz spectral bands, respectively; the blue solid curve results from
the multiplication of 140 and 420 GHz results. The optimal HWP thickness was chosen to be
the the thickness value where the blue curve is maximized, 3.5 mm. The adjusted final thickness
value of 3.4 mm resulted from fine corrections to the presented calculation that take into account
the convergence of the incident radiation as it propagates through the sapphire crystal [34] (see
Figure 2.7).

3.2 Anti-Reflection Coating and HWP Absorption

The HWP design calculations presented in Section 3.1 are somewhat idealized because they assume
the transmission through the HWP is unity. In reality, as mentioned previously, there are significant
secondary effects – reflections and absorption – that reduce the overall transmission and produce
systematic errors that are large compared to the random error arising from the detector noise if
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Figure 3.4: Expected polarimeter performance as a function of crystal thickness for the 140 (red dash) and 420
(green dash-dot) GHz MAXIPOL spectral bands. The blue solid curve results when the 140 and 420 GHz curves
are multiplied. The optimal HWP thickness for the two frequency band experiment was computed to be 3.5 mm by
finding the maximum of the blue solid curve.

Equation 3.18 is used to measure Pin. To assess the level of systematic error these secondary effects
produce, we add more Mueller matrices to the calculations to make the resulting data stream model
more accurate.

3.2.1 AR Coatings

Anti-reflection (AR) coatings are added at the HWP surfaces and modeled as non-ideal polarizers
that rotate synchronously with the HWP. The transmission coefficients for these polarizers are set
to T ar

o,e = 1−Ro,e where

Ro,e =
n2

a(n− no,e)2 cos2(kh) + (nno,e − n2
a)

2 sin2(kh)
n2

a(n + no,e)2 cos2(kh) + (nno,e + n2
a)2 sin2(kh)

(3.29)

Here, k is the free space propagation number for the radiation, k = 2π/λ, n, na and no,e are the
indices of refraction for free space, the AR coating material and sapphire, respectively and h = nad
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Figure 3.5: Total reflectance and differential reflectance for sapphire AR coated with Herasil assuming the Gaussian
spectral bands plotted in Figure 3.3. The reflectance is plotted versus AR coating thickness in mil (thousandths of
an inch). Results for the 140 and 420 GHz photometers are plotted in the top and bottom panel, respectively.

where d is the thickness of the AR coating [32]. This expression is completely general. If d is set
to 0 then R simplifies to

Ro,e =
(n− no,e)2

(n + no,e)2
(3.30)

and we are purely considering reflections produced at the free space/sapphire interface. Conversely,
if d is set to λ/4 and n2

a = nno,e then R vanishes and T = 1 – the added AR coating completely
eliminates all reflections. To make this AR prescription work for the HWP however, one needs to
use a birefringent material for the AR coating because the sapphire is birefringent. This material
must have nao =

√
no and nae =

√
ne. A material with birefringent characteristics that match

sapphire in this way is not known to exist .

The thickness of a single layer AR coating is tuned to perform perfectly for only one frequency and
its harmonics – so inside a typical MAXIPOL photometer band, the coating acts like a monochro-
matic device. Broadband AR coating technologies are known to exist [35]. However, designing
a device that survives physically in the the 4 K environment while performing effectively in both
frequency bands proved to be be a longer time scale endeavor than the MAXIPOL program itself.
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Future CMB polarization experiments will likely employ broadband AR coatings. For MAXIPOL
we decided to use a single layer non-birefringent AR coating constructed from 0.013 inch thick
Herasil, which is made from fused quartz. To calculate the total and differential reflectance, we
computed numerically the integral

Rtotal
o,e =

1
σx

√
2π

∫ ∞

0
e
−(ν−µx)2

2σ2
x Ro,e(ν) dν (3.31)

where x again is either 140 or 420 and µx and σx are taken from the fits in Figure 3.3. The result,
which is plotted in Figure 3.5, is a function of AR coating thickness. The blue solid curve and the
red dash curve in both panels illustrate the total reflectance from the extraordinary and ordinary
axes, respectively. The green dash-dot curve is the absolute value of the difference of the o and
e curves. A vertical dotted line plotted at 13 thousandths of an inch marks the MAXIPOL AR
coating thickness. This thickness was selected to match the intersection where Rtotal

o = Rtotal
e in

the 140 GHz plot. Figure 3.5 suggests the intersection occurs closer to 0.012 inches. The decision
to use a 0.013 inch thick coating instead of 0.012 inch was based on a correction to this calculation
that takes into account the convergence of the radiation as it passes through the HWP [34].

3.2.2 Absorption

The differential absorption in the sapphire can be modeled similarly. Here,

T a
o,e = e−αo,et (3.32)

αo,e is the absorption coefficient and t is the thickness of the HWP. The Mueller matrix for both
phenomena is defined as

M̂x =
1
2




r00 r01 r02 r03

r10 r11 r13 r14

r20 r21 r21 r23

r30 r31 r32 r33




(3.33)

where x is a generic subscript/superscript that can be replaced with either a for HWP absorption
or ar for AR coating. The matrix elements are defined

r00 = (T x
o + T x

e )

r01 = (T x
o − T x

e ) cos(2ρ)

r02 = (T x
o − T x

e ) sin(2ρ)

r03 = 0

r10 = (T x
o − T x

e ) cos(2ρ)
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r11 = (T x
o + T x

e ) cos2(2ρ) + 2
√

T x
o T x

e sin2(2ρ)

r12 =
(

(T x
o + T x

e )− 2
√

T x
o T x

e

)
cos(2ρ) sin(2ρ)

r13 = 0

r20 = (T x
o − T x

e ) sin(2ρ)

r21 =
(

(T x
o + T x

e )− 2
√

T x
o T x

e

)
cos(2ρ) sin(2ρ)

r22 = (T x
o + T x

e ) sin2(2ρ) + 2 cos2(2ρ)
√

T x
o T x

e

r23 = 0

r30 = 0

r31 = 0

r32 = 0

r33 = 2
√

T x
o T x

e

3.2.3 Data Stream Model with Absorption and Reflection

Again, the data stream is the Ith element of ~Sout

M̂p M̂ar M̂a M̂h M̂ar
~Sin = ~Sout (3.34)

Here the Mueller matrix for the polarizer is defined

M̂p =
1
2




p2
x + p2

y p2
x − p2

y 0 0
p2

x − p2
y p2

x + p2
y 0 0

0 0 2pxpy 0
0 0 0 2pxpy




(3.35)

If we have the ideal case where T x
o,e = 1, δ = π, px = 1 and py = 0 then it is easy to show that

~S1
out equals Equation 3.19. However, any real system is non-ideal so it is beneficial to understand

analytically how the known realistic phenomena impact the overall polarimeter inefficiency. The
analytical calculation is quite tedious. Since we know a priori that the differential absorption is
negligibly small, we will ignore its contribution going forward. As a result, consider this expression
instead.

M̂p M̂ar M̂h M̂ar
~Sin = ~Sout (3.36)

Omitting several intermediate steps, the result emerges

Iout = Io
out + I2ρ

out + I4ρ
out (3.37)
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Io
out =

Iin

4
(p2

x + p2
y)(T

2
o + T 2

e ) +
Qin

8
(p2

x − p2
y)

[
(T 2

o + T 2
e ) + 2ToTe cos(δ)

]
(3.38)

I2ρ
out =

1
4

(T 2
o − T 2

e )
[ (

Iin (p2
x − p2

y) + Qin (px2 + p2
y)

)
cos(2ρ) + Uin (p2

x − p2
y) sin(2ρ)

]

I4ρ
out =

1
8

(p2
x − p2

y)
[

(T 2
o + T 2

e )− 2ToTe cos(δ)
]
( Qin cos(4ρ) + Uin sin(4ρ) )

3.3 Polarimeter Efficiency

To ascertain the polarimeter performance, we measured a linearly polarized load in the lab before
flight. This load was comprised of a container lined with 2 inch thick Eccosorb LS-14 “egg crate”
foam and filled with ice water. Thermal radiation emanating from this source was then chopped
with an ambient temperature aluminum chopper blade coated with 0.25 inch thick Eccosorb LS-14
foam sheets; the chop frequency was set to ∼6.5 Hz. The signal was then linearly polarized with
a wire-grid polarizer mounted to the cryostat window with hardware specifically designed to allow
polarizer rotation and prohibit by-pass leakage. The polarizer was fabricated by Buckbee-Mears
and constructed from electroformed 0.0002 inch diameter gold wires bonded to 0.0015 inch thick
Mylar film at 250 lines per inch. Using Equation 3.15 and the results in Table 3.3 we determined
these grids produce 96.6% polarized radiation at 140 GHz (Section 3.4). The transmission axis of
the window polarizer was aligned to within three degrees of the the transmission axis of the focal
plane polarizer. This alignment was difficult because it was impossible to manipulate both pieces
of hardware concurrently as the focal plane polarizer was sealed inside the receiver and cooled to 4
K long before the window polarizer was installed. To solve this problem we aligned both elements
to within one degree of the symmetry plane of the receiver knowing that any movement of the focal
plane polarizer arising from thermal contraction as the innards of the receiver cooled to 4 K would
produce an error in this measurement – the three degree uncertainty mentioned above represents
a conservative estimate and not a measurement. During data collection, the HWP orientation was
then discretely stepped by hand in ∼5◦ intervals. Roughly twenty seconds of data were collected
at each HWP position.

The source was chopped for two primary reasons. First, the photometer output has significant 1/f
noise so the I term in Equation 3.19 is corrupted by noise drifts. Second, the primary detector
outputs are AC coupled so the gain before the ADC can be maximized. As a result, the I term is
in fact discarded. Photometer output that is not AC coupled is available however it suffers from
the aforementioned low frequency noise and the gain before the ADC is smaller by a factor of ∼36
so the voltages recorded are not as precise. The upshot is the chopped source adds a tractable layer
of complexity to the data analysis but produces the most accurate results.



34

Figure 3.6: A lab measurement of a 96.6% linealy polarized load. This measurement was made to assess the
polarimeter performance (see Section 3.3).

3.3.1 Chopped Source

Assuming we are analyzing the detector output from an ideal HWP polarimeter (Equation 3.19),
the extremum of the amplitude of the chopped signal equals

Amax
chop =

1
2

[
1
2

(
I300 +

√
Q2

300 + U2
300

)
− 1

2

(
I273 +

√
Q2

273 + U2
273

)]

(3.39)

Amin
chop =

1
2

[
1
2

(
I300 −

√
Q2

300 + U2
300

)
− 1

2

(
I273 −

√
Q2

273 + U2
273

)]

The subscripts 300 and 273 correspond to the ∼300 K chopper blade and the 273 K ice bath,
respectively. Applying these terms to Equation 3.18 yields

Amax
chop −Amin

chop

Amax
chop + Amin

chop

=

√
Q2

300 + U2
300 −

√
Q2

273 + U2
273

I300 − I273
(3.40)

This expression can be simplified using the knowledge that both temperatures are polarized equally

P =

√
Q2

300 + U2
300

I300
=

√
Q2

273 + U2
273

I273
→ I300 = I273

√
Q2

300 + U2
300√

Q2
273 + U2

273

(3.41)
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By substituting Equation 3.41 into Equation 3.40 we show that it is possible to measure Pin with
the chopped source.

Pout =
Amax

chop −Amin
chop

Amax
chop + Amin

chop

=

√
Q2

273 + U2
273

I273
= Pin (3.42)

3.3.2 Data Analysis

To glean the amplitude of the chopped signal from the data, we used an analysis technique inspired
by the lock-in amplifier. The time ordered data associated with one HWP orientation were ex-
tracted from the full data set and a third degree polynomial was fit to this subset and subtracted
to remove any drifts in the data stream. Here we used a least-square polynomial fit with no weight-
ing. This subtraction is not necessary for the lock-in operation itself. However, because this is
a finite, discretely sampled data set, the offset and drift subtraction becomes important because
the endpoints of the data stream must be compatible to reduce ringing when the data is Fourier
transformed to the frequency domain for low-pass filtering and because the data will be used to
create the lock-in reference so it must have mean zero. Now we create this lock-in reference.

ri =

{
1 for {i : di ≥ 0}
−1 for {i : di < 0} (3.43)

This prescription produces a square wave reference which will yield accurate results if the data is
a square wave as well. In reality the chopper blade produces a quasi-square-wave signal because
the transit time for the blade edge to cross the photometer beam is appreciable. As a result, the
measured amplitude will be off by some small factor. This fact is insignificant because all amplitudes
will be effected equally so the factor disappears when Pout is computed (see Equation 3.42). Now
we forward FFT the data times the reference

d̃k =
1
N

N−1∑

i=0

di ri e
−i2πki/N (3.44)

filter and then reverse FFT back to the time domain

dFi = Re

(
N−1∑

k=0

d̃k Fk ei2πki/N

)
(3.45)

The cutoff frequency of this square low-pass filter is designed to eliminate signals at harmonics of
the chop frequency greater than the Nyquist frequency that get aliased to just over 2 Hz.

Fk =

{
1 for {k : |fk| ≤ 2}
0 for {k : |fk| > 2} (3.46)
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Here we use the FFT storage scheme where the frequency associated with any FFT bin indexed by
k is

fk =
k

N ∆t
for k = 0, 1, · · · , N

2
(3.47)

fN−k =
−k

N ∆t
for k = 1, 2, · · · , N

2
− 1 (3.48)

The chop amplitude and its error is computed at each HWP orientation using the standard equa-
tions.

µρ =
1
N

N−1∑

i=0

dFi and σρ =
N−1∑

i=0

(dFi − µ)2

N − 1
(3.49)

The results from one photometer are presented in Figure 3.6. The chop amplitude versus HWP
orientation angle is plotted in the upper left panel. The blue curve overplotted is an eight sine
wave model fit to the data using a non-linear least squares routine employing a gradient expansion
algorithm with convergence criteria set to ∆χ2 = 10−6. The amplitude and phase of each of the
eight Fourier components is plotted in the upper and lower right, respectively. Clearly the dominant
signals are an offset and a cos(4ρ) signal – which is the result expected. The data minus the model
is plotted in the lower left to elucidate the error bars and the goodness of fit of the model. The error
bar resulting from this lock-in calculation is smaller than the nominal noise rms because the filter
used rejects 98% of the bandwidth. The filtering process also strongly correlates the remaining
noise so dFi is not simply an array of uncorrelated Gaussian random variables.

We computed Pout using the fit parameters and their associated errors. For this calculation,

Amax
chop = ξ + A4ρ

Amin
chop = ξ −A4ρ

Pout =
Amax

chop −Amin
chop

Amax
chop + Amin

chop

=
A4ρ

ξ
(3.50)

where A4ρ is the amplitude of the cos(4ρ) Fourier component and ξ is the offset. We calculated Pout

with A4ρ only because in principle all other signals should be spurious. Assuming normal incidence,
Pin = 0.966 and Tx = 1 and Ty = 0.0174 for the focal plane polarizer, Pout should equal 0.857 for this
measurement for the 140 GHz photometers. This prediction was calculated using a rederivation
of Equation 3.27 seeded by Equation 3.13 rather than Equation 3.17. In practice, a significant
fraction of the radiation has a non-normal incidence angle so the expected Pout should be smaller
than 0.857. The results computed from the data are presented in Table 3.1. The error reported
is only statistical. A systematic error in the measurement expected to be much larger than the
statistical error results from a responsivity variation that is synchronous with the HWP orientation.
The results and predictions match closely given the uncertainties in both. Data analysis is ongoing.
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Photometer Amplitude of cos(4x) Phase of cos(4x) Offset Pout

b13 5.517±0.006 -141.15±0.08 6.883±0.005 0.801±0.001
b14 3.236±0.005 36.61±0.10 3.915±0.004 0.827±0.002
b15 6.754±0.007 -146.28±0.07 8.597±0.005 0.786±0.001
b23 5.089±0.007 34.84±0.09 6.068±0.005 0.839±0.001
b24 3.860±0.005 34.15±0.11 4.815±0.004 0.802±0.001
b25 5.739±0.010 35.63±0.13 7.234±0.007 0.793±0.002
b33 6.138±0.008 33.13±0.08 7.410±0.006 0.828±0.001
b34 4.771±0.006 37.39±0.07 5.793±0.004 0.824±0.001
b35 5.291±0.008 41.17±0.09 6.491±0.005 0.815±0.001
b43 5.071±0.008 30.39±0.09 5.032±0.006 1.008±0.002
b44 3.562±0.012 35.53±0.24 4.329±0.010 0.823±0.003
b45 3.254±0.004 42.85±0.08 4.185±0.003 0.777±0.001

Table 3.1: Pout calculated from the fit parameters measured using the technique illustrated in Figure 3.6. Only
statistical error is reported. Pout is expected to be 0.857 assuming normal incidence, Pin = 0.966 and Tx = 1 and Ty

= 0.0174 for the focal plane polarizer.

3.4 Wire Grid Polarizers

We characterized the Buckbee-Mears wire-grid polarizers with a measurement using the MAXIPOL
receiver. For this test, a rotating polarizer was mounted in the optical path at the cryostat window
and the chopped load described in Section 3.3 was placed just outside the cryostat window near the
prime focus of the telescope; the thermal radiation from this source completely filled the beam. No
HWP was present for this measurement. The linearly polarized signal produced by the combination
of these two devices was analyzed with the nominal focal plane polarizer. The rotating polarizer
was stepped discretely in 11.4◦ steps; 2 seconds of data were collected at each orinetation. The
amplitude of the chopped signal was ascertained using the software lock-in amplifier technique
described in Equations 3.43 to 3.46.

Using Mueller matrix algebra, we calculated that the anticipated signal for this test should be the
Ith term of ~Sout.

M̂fp
p M̂w

p
~Sin = ~Sout (3.51)

The static focal plane polarizer is described by the matrix

M̂fp
p =

1
2




Tx + Ty Tx − Ty 0 0
Tx − Ty Tx + Ty 0 0

0 0 2
√

TxTy 0
0 0 0 2

√
TxTy




(3.52)
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while the rotating polarizer at the cryostat window, M̂w
p , is described by

M̂w
p =

1
2




r00 r01 r02 r03

r10 r11 r13 r14

r20 r21 r21 r23

r30 r31 r32 r33




(3.53)

with the matrix elements defined

r00 = (Tx + Ty)

r01 = (Tx − Ty) cos(2α)

r02 = (Tx − Ty) sin(2α)

r03 = 0

r10 = (Tx − Ty) cos(2α)

r11 = (Tx + Ty) cos2(2α) + 2
√

TxTy sin2(2α)

r12 =
(

(Tx + Ty)− 2
√

TxTy

)
cos(2α) sin(2α)

r13 = 0

r20 = (Tx − Ty) sin(2α)

r21 =
(

(Tx + Ty)− 2
√

TxTy

)
cos(2α) sin(2α)

r22 = (Tx + Ty) sin2(2α) + 2 cos2(2α)
√

TxTy

r23 = 0

r30 = 0

r31 = 0

r32 = 0

r33 = 2
√

TxTy

Setting ~Sin = [ ∆Iin, 0, 0, 0 ], the Ith element of ~Sout becomes

Iout =
1
4
∆Iin

[
(Tx + Ty)2 + (Tx − Ty)2 cos(2α)

]
(3.54)

∆Iin is the intensity difference between the two thermal sources in the chopped signal, Tx and Ty are
the intensity transmission coefficients for the polarizer and α is the rotating polarizer orientation
angle. Notice Equation 3.53 is the same as Equation 3.35 if Tx = p2

x and Ty = p2
y. Clearly there

should only be a cos(2α) signal in the data. If the raw data is analyzed however, we find a small
but detectable amount of cos(4α) signal in addition to the large cos(2α) signal. This harmonic
distortion results from the fact that the responsivity of the bolometers varies as the radiative load
varies with α. Using our knowledge of the thermal properties of the detectors, we can back out the
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G ∆ Ro Rload Vbias Tb δ g
70 [pW/K] 14.4 [K] 120 [Ω] 160 [MΩ] 70 [mV] 0.105 [K] -0.201 [V] 1800

Table 3.2: Bolometer parameter values used to correct the wire-grid polarizer measurements.

varying responsivity effect and obtain a more accurate result. Using these equations, we can solve
for the bolometer absorber temperature, T .

Vbolo − δ

g
= Ibias Ro e

q
∆
T where Ibias =

Vbias

Rload + Ro e

q
∆
T

(3.55)

Vbolo is the detector output, δ is a small offset introduced by the amplifiers in the readout electronics,
g is a gain factor, Ro and ∆ are parameters that define the shape of the temperature dependence
of the thermistor resistance, Vbias is the rms of the AC bias voltage and Rload is a load resistance
in series with the bolometer. Rload À Rbolo so the bias current, Ibias, is constant. Once we have
the absorber temperature, we can calculate the absolute power absorbed by the detector.

Po = G (T − Tb)− I2
bias Ro e

q
∆
T (3.56)

G is the average thermal conductance between the absorber and the bath and Tb is the bath tem-
perature. The parameter values used in this calculation are displayed in Table 3.2. The corrected
and normalized results are plotted in the upper left panel of Figure 3.7. Each bin value represents
the average of the data stream collected at each polarizer orientation post lock-in and the error
bar (smaller than the symbol) represents the standard deviation. Lock-in details are discussed in
Section 3.3.2. The error bars in the bins are smaller than the nominal detector noise rms because
the low-pass filter in the software lock-in removes 99.6% of the bandwidth (sample period, ∆t =
0.98 ms, fNyquist = 510 Hz and the square, low-pass filter cutoff = 2 Hz). The filtering process
also strongly correlates the remaining noise so dFi is not simply an array of uncorrelated Gaussian
random variables.

A model comprised of eight sine waves and an offset was fit to the data using a non-linear least-
squares routine. The fit was weighted by the standard deviation in each bin and the convergence
criteria was set to ∆χ2 = 1 × 10−6. For the model, the angular frequency of the eight sine waves
was fixed to the first eight harmonics of the angular frequency of the polarizer and the amplitude
and phase for each sine wave was allowed to vary so overall there were 17 free parameters. The
fit amplitudes and phases are plotted in the upper right and lower right panels of Figure 3.7,
respectively, while the binned data minus the best fit model is plotted in the lower left. The
amplitudes of the sin(ρ), sin(3ρ), sin(5ρ), sin(6ρ), sin(7ρ) and sin(8ρ) components are consistent
with zero to 1-σ. The sin(4ρ) component has a residual amplitude after the correction of 0.005 ±
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0.001 in normalized units – which is inconsistent with zero. However, this signal is three orders of
magnitude smaller than the cos(2ρ) component so it doesn’t effect the result significantly.

Plugging Equation 3.54 into Equation 3.18 we see that

Pout =
(Tx − Ty)2

(Tx + Ty)2
(3.57)

Assuming that the transmission along the principal transmission axis of the polarizer, Tx = 1 then

Ty =
1−√Pout

1 +
√

Pout
(3.58)

Pout was determined from the data to be 0.933± 0.003 which means one grid produces 96.6% linearly
polarized radiation. The resulting measured transmission parameters for 140 GHz radiation are
listed in Table 3.3.

x y
amplitude attenuation coefficients, p 1 0.132 ± 0.003
intensity transmission coefficients, T 1 0.0174 ± 0.0007

Table 3.3: Amplitude attenuation and intensity transmisson coefficiense for the Buckbee-Mears wire-grid polarizers
ascertained by measurements at 140 GHz.
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Figure 3.7: A characterization of the wire-grid polarizer used in the MAXIPOL receiver.



Chapter 4

The MAXIPOL Flights

Figure 4.1: The MAXIPOL payload on the launch pad at the National Scientific Ballooning Facility in Ft. Sumner,
New Mexico in September 2002.

4.1 MAXIPOL-0

During the ∼22 hour MAXIPOL-0 flight the NASA data transmitter failed sporadically because
of a broken solder connection. As a result, only a few ∼10 minute sections of bolometer data were
successfully recorded; we did not realize enough integration time for CMB measurements. The
flight did provide us with the opportunity to check the in-flight polarimeter performance and to
test the new daytime pointing camera, the sun shielding strategy and the HWP driveshaft motor
and encoder. The flight trajectories and altitude profiles for MAXIPOL-0 and MAXIPOL-1 are
illustrated in Figure 4.2.

42



43

Figure 4.2: MAXIPOL-0 and MAXIPOL-1 flight trajectories and altitude profiles.

4.2 MAXIPOL-1

During the MAXIPOL-1 flight, we executed four different types of telescope scans: a planet scan,
a dipole scan, a CMB scan and a foreground dust scan.

During the planet scan, the gondola yawed sinusoidally 2.5◦ peak-to-peak in azimuth at a slowly-
rising elevation for ∼1 hour. The scan period was 18 seconds. During this time, Jupiter passed
through the field-of-view of the instrument and was detected by the bolometers. This data set
will be used to map the beam shape of each photometer and calibrate the bolometer time streams
given the known millimeter-wave intensity of Jupiter. We performed both daytime and nighttime
observations of Jupiter.

The CMB dipole was scanned by rotating the gondola 360◦ in azimuth while holding the telescope
at a constant elevation of 36◦ for 22 minutes. A second ∼10 minute scan was performed at an
elevation of 50◦. The period of a single rotation was 18 seconds. With this data set we will
calibrate the bolometer time streams given the large, known CMB dipole signal.

For the CMB and dust scans, the telescope tracked a guide star as it swept across the sky. Si-
multaneously, the gondola yawed 2◦ peak-to-peak in azimuth with a period of 10 seconds. This
telescope motion combined with the inherent sky rotation produced bow tie shaped maps. To
improve cross-linking, the telescope elevation dithered periodically about the elevation of the guide
star by ± 0.2◦ with an elevation change occurring every 10 minutes. Table 4.1 summarizes the
scan length and the expected dust contribution for the five regions observed during MAXIPOL-1.
Regions with strong dust contamination will be used to characterize this foreground signal.
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Observation Length Average Dust RMS Dust
in [hours] Level [µK] Level [µK]

Beta Ursae Minoris 7.5 20 3.2
Polaris 2.25 173 23

Gamma Urase Majoris 2.5 11 2.5
Gamma Virgo 0.5 22 3.2

Arcturus 2.0 27 5.1

Table 4.1: MAXIPOL-1 scan regions. Five bow tie shaped regions of the sky were mapped during MAXIPOL-1 by
tracking five different guide stars. The observation length and the expected dust contribution for each region [26] is
presented.

To monitor the bolometer temperature dependence of the calibration, a fixed intensity millimeter-
wave lamp mounted near the focal plane was switched on for 10 seconds every 22 minutes. The
relationship between the magnitude of the subsequent bolometer response and the known bolometer
temperature will be ascertained during data analysis. The responsivity of each bolometer sample
will be interpolated given this relative calibration and the absolute Jupiter and CMB dipole cali-
brations.

-100

-100

-50 0 50 100

-50

0

50

100

Beta Ursae Minoris

       Scan Region

Polaris Scan Region

Figure 4.3: 150 GHz SFD dust map with primary MAXIPOL scan regions overplotted.



Chapter 5

Data Analysis

5.1 Introduction

The raw data stream emerging from the MAXIPOL instrument can be written

di = si + ni + hi + gi (5.1)

where s is the sky signal we are in search of, n is Gaussian random noise, h is a HWP-synchronous
instrumental signal, g is a spurious signal produced by transients and i is the index number of
the discretely sampled data. Ultimately we want to unambiguously distinguish s from n, h and
g. Transients are easily identifiable so they are masked from the data stream using the procedure
detailed in Section 5.2. The instrumental signal is estimated using the procedure described in
Section 5.4 and then this estimate is subtracted from the data stream yielding

di = si + ni + hi − ĥi = si + ni (5.2)

if h = ĥ where ĥ is the estimated instrumental signal. In practice, h 6= ĥ exactly. Therefore,
Section 5.4 will also discuss the systematic error the ĥ estimator introduces. Once Equation 5.2 is
obtained, the data is binned to form a pixelized sky map where the pixel value,

mp =
1

N ′

N ′−1∑

i′=0

di′ (5.3)

45
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the pixel variance,

vp =
N ′−1∑

i′=0

(di′ −mp)2

N ′ − 1
(5.4)

and the pixel error,

σp =
√

vp

N ′ (5.5)

Here, i′ ⊂ i. The addresses associated with a particular pixel (i′) are ascertained using the telescope
pointing data, ~θ(ri, δi).

i′ = {i : rmin
p ≤ ri < rmax

p } ∩ {i : δmin
p ≤ δi < δmax

p } (5.6)

This method does not account for noise correlations in the time domain or the pixel domain. One
way to account for these effects is to calculate the maximum likelihood map.

mp =
(ATN−1

t A)−1ATN−1
t di (5.7)

Np =
(ATN−1

t A)−1
(5.8)

where Np is the Np × Np pixel domain noise correlation matrix, Nt is the Nt × Nt time domain
noise correlation matrix defined

Nt ≡ 〈nin
T
i 〉 (5.9)

and A is the Np ×Nt pointing matrix with pth column defined

Ap =

{
1 for i ∩ i′

0 for i \ i′
(5.10)

The matrix inversion and multiplication associated with the maximum likelihood map computation
requires parallel processing and therefore represents a problem that lies beyond the scope of this
thesis. The map computed using Equations 5.3 & 5.5 is the status quo circa July 2004. Subsequent
more sophisticated MAXIPOL analyses will account for all relevant correlations. The reader should
interpret all pixel domain results presented here as a rough first estimate.

5.2 Transient Removal

To remove the gi term from Equation 5.1 we use the method schematically illustrated in Figure 5.1.
The ultimate goal is to catalog the index values of sampled data containing signal from cosmic rays
or other transient signals. The data elements cataloged are not used in the pixelized sky map.

The raw MAXIPOL data is nominally stored in binary data files with 9600 data frames per file and
192 16-bit data words per frame. Each frame has a unique frame number recorded as a 2 digit base
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Collection of Raw Data Files

One Data File

HWP Encoder Data Raw Bolometer Data

High-pass Filter

Sort

Bin Data

Spline Interpolate

Undo Sorting Instrumental Signal Estimate

Difference

Flag ADR Ramps, Calibrator

Lamp Pulses and HWP 

Motor Speed Instabilities

Flags Array

Flag and Remove Transients

High-pass and Notch Filter

Flag 5

Bolometer Data

HWP Encoder Data

Flags Array

Binned Template

Signal, Noise and Transients

Signal and Noise

Final Data Products

Figure 5.1: Schematic representation of the algorithm used to flag transient signals.
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216 number. The frame numbers of frames containing data corrupted by calibrator lamp pulses,
ADR current ramps and HWP motor speed instabilities were cataloged; using this lookup table,
the data rendered useless by the aforementioned phenomena are flagged as bad out of hand by this
procedure.

Each bolometer is sampled four times per frame yielding 38,400 bolometer samples per file. In total,
each bolometer was sampled 5,778,432 times during the primary CMB scan centered on Beta Ursae
Minoris. Working with several arrays containing five million elements each is a cumbersome task
because the transient signal removal software requires several transforms to the frequency domain.
As a result, the decision was made when designing this algorithm to work with one file of data at
a time.

Usually the magnitude of the transient signals we are searching for is smaller than the magnitude
of the instrumental signal so it is necessary to remove the instrumental signal in order to simply
locate the transients. To do this subtraction we use the following algorithm. First, the data is
high-pass filtered in the frequency domain to remove any 1/f noise.

dFi = Re

(
N−1∑

k=0

d̃k Fk ei2πki/N

)
(5.11)

where the ∼ indicates the discrete forward Fourier transform

d̃k =
1
N

N−1∑

i=0

di e
−i2πki/N (5.12)

and Fk is a simple square high-pass filter defined as

Fk =

{
1 for {k : |fk| ≥ 1}
0 for {k : |fk| < 1} (5.13)

The filter cutoff is designed to match the typical 1/fknee of ∼0.5 Hz. Here we use the FFT storage
scheme where the frequency associated with any FFT bin indexed by k is

fk =
k

N ∆t
for k = 0, 1, · · · , N

2
(5.14)

fN−k =
−k

N ∆t
for k = 1, 2, · · · , N

2
− 1 (5.15)

The filtered data is then binned in HWP angle where the samples in any bin superscripted by α

are

bα
j = dFi′ where i′ = {i : α ≤ ρi < α + 1} and α = 0, 1, · · · , 359 (5.16)

Clearly bα
j ⊂ dFi . The quantity ρi is the HWP orientation measured by the optical encoder coupled

to the HWP drivetrain. The bin size for this template is set to 1◦. Given our 1.9 Hz HWP rotation
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Figure 5.2: Binned HWP synchronous signal template. The binned data are plotted in the top panel and this
template minus an eight sine wave model is plotted in the bottom panel to show the magnitude of the error per bin,
which is equivalent to the noise rms.

frequency, the HWP moves 3.3◦ every 4.8 ms. Therefore if the bin size is set to a value > 3.3◦,
adjacent samples in the data set will have the same template value and the estimated instrumental
signal will appear staircase instead of smooth and continuous. The 1◦ bin size will produce 107
samples per bin on average for a file with 38,400 total samples. If the the bin size is much less
than 1◦ there may not be enough samples in the bin to meaningfully compute the bin average and
standard deviation. The 1◦ bin size falls comfortably inside the window of viable bin sizes so we
use it.

Next we create an average instrumental signal template for one HWP rotation, which will ultimately
be subtracted from each HWP rotation in the data stream. Inside every bin, it is essential that all
outliers be rejected so the average bin value is not erroneously biased. Any spurious signals injected
into this template will be periodically added to the data stream thereby producing a systematic
error. To reject the outliers, we histogram bα

j . To maximize the usefulness of this histogram, we
compute it iteratively increasing the bin size until the most populated bin has at least 20 samples in
it. Since our noise is Gaussian, this histogram is typically Gaussian and outliers are defined as data
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points in histogram bins that fall outside of this Gaussian envelope – specifically µ± 3σ. In some
bins however, the histogram is not Gaussian because the instrumental signal change across the bin
is À than the noise rms. To accommodate both scenarios, we compute the standard deviation
about the mode rather than the mean. Here the mode is estimated from the the histogram as
the bin value of the bin that has the most samples in it – the bin value of the bin with the most
samples in it (± the bin half width) is the most probable signal. The standard deviation about
the mode statistic used to define the outlier cutoff criteria is computed using the histogram bin
values, considering only bins that have at least one sample in them. The cutoff criteria was set
to mode ± 1.5σmode, which was empirically determined to be equivalent to be µ ± 3σ in the pure
Gaussian noise limit. Once the outliers are rejected, the bin average and standard deviation are
computed.

µα =
1

N ′

N ′−1∑

j′=0

bj′ and σα =

√√√√
N ′−1∑

j′=0

(bj′ − µα)2

N ′ − 1
(5.17)

where j′ = {j : mode− 1.5σmode ≤ bα
j ≤ mode + 1.5σmode}. The binned template is plotted in the

top panel of Figure 5.2.

The entire HWP encoder data set, ρi, is then sorted so the measurements followed ascending order
between 0 and 360 degrees. A template value is computed for each HWP orientation measurement
using the binned template, µα, via spline interpolation. This interpolated HWP angle domain
template is then unsorted thereby producing a time domain template data array that contains an
estimate of the average instrumental signal at each bolometer sample. When this template stream
is subtracted from the raw data, using the convention established in Equation 5.1, we are left with

di = si + ni + gi + hi − ĥi ' si + ni + gi (5.18)

Now the gi signal is visible and can therefore be masked out.

The HWP synchronous instrumental signal subtraction is demonstrated in Figure 5.3. Three min-
utes of BUM scan data from one 140 GHz photometer is plotted versus HWP orientation angle in
the upper left panel. For clarity, this patch of data contains no transients, so for this example

di = si + ni + hi (5.19)

The power spectrum of this time ordered data is plotted in the upper right panel. The estimated
template stream and its companion power spectrum are plotted in the middle left and right, respec-
tively. The data minus the template stream and the power spectrum of the difference are plotted
in the bottom two panels. Notice the instrumental signals (hi) that produce the peaks in the upper
right panel subtract out to at least the nominal white noise level of the photometer. Therefore,

di = si + ni + hi − ĥi ' si + ni (5.20)
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Figure 5.3: Demonstration of the HWP synchronous instrumental signal removal (see Section 5.2).
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(a) (b)

Figure 5.4: Demonstration of transient removal and gap filling.

A set containing 5,778,432 Gaussian random variables should have only 3.3 samples outside the
window µ± 5σ. Since our noise is Gaussian, a naive approach for removing gi from di leaving only
ni and si would be to reject all samples greater than 5-σ away from the mean1. In fact, there are
two issues that complicate this operation. First, large transients erroneously bias the estimate of µ

and σ. Second, a simple application of the 5-σ exclusion criteria assumes the data stream is noise
dominated (si ¿ ni). If this assumption is wrong, this blind rejection would remove viable and
interesting signal from the data stream. Our solution to the second problem also solves the first
problem.

To eliminate the possibility of discarding viable sky signal, we filter the raw data minus the template
stream in the frequency domain before applying the 5-σ rejection criteria. Here we use the trans-
forms described in Equations 5.11 and 5.12, and a filter that removes all signals in the frequency
bands where the sky signals may reside.

Fk =

{
1 for {k : 2 < |fk| < 6} ∪ {k : |fk| > 10}
0 for {k : |fk| ≤ 2} ∪ {k : 6 ≤ |fk| ≤ 10} (5.21)

This filter is a square high-pass filter with a 2 Hz cutoff plus a square notch filter between 6 and
10 Hz. Data containing short timescale transients larger than ∼1 µV (typical noise rms = 0.1 µV)
will produce pathological ringing in the filtered data. Therefore, before filtering we remove these
large signals by hand and fill the generated gaps. An example of this operation is illustrated in
Figure 5.4. The raw data minus the template stream is lotted in (a). A close-up of the largest

1Chauvenet’s criteria states that it is reasonable to discard data if N×PTE < 0.5. As mentioned above, 5,778,432
× PTE5σ = 3.3, which means we slightly violate this rule. To faithfully follow Chauvenet’s criteria we would need
to use between 5.3 and 5.4-σ as a cutoff.
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(a) (b)

Figure 5.5: Demonstration of the need for transient removal before high-pass and notch filtering. The top row of
plots shows the raw, uncleaned data, the power spectrum of this data stream and the data post filtering. The bottom
row of plots shows the same sequence using the same data set but with the transients removed and the gaps filled.

transient in (a) is plotted in the top panel of (b). The blue curve marks the region where the data
is flagged as bad. The bottom panel of (b) shows the same data minus the transient; in its place,
a straight line whose endpoints match the gap endpoints plus a simulated noise realization. This
gap filler is colored red. The noise realization is generated in the frequency domain according to
the prescription outlined in Appendix B so the power spectrum of the gap filler closely matches
the power spectrum of the actual data.

To elucidate the need for transient removal before filtering, we show in Figure 5.5 (a), the time
stream and power spectrum of the uncleaned (top left and right, respectively) and cleaned (bottom
left and right, respectively) data. By looking at the power spectrum one can see which power Fk

removes and which power it does not remove. The top panel of portion (b) of the same figure
clearly shows the ringing caused by filtering the uncleaned data, and how cleaning before filtering
eliminates this pathology, in the bottom panel. The horizontal blue-dash demarcations in both
panels illustrate the 5-σ cutoff limit. The large red dots in the top panel are plotted over points
flagged as bad by the clean-then-filter method. Clearly, not removing the transients before filtering
causes excessive and erroneous data flagging.
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5.3 Demodulation

The data stream produced by an ideal HWP and wire-grid polarizer polarimeter observing a sta-
tionary sky can be modeled

si =
1
2

[
Isky(~θi) + Qsky(~θi) cos(4ρi) + Usky(~θi) sin(4ρi)

]
(5.22)

where Isky, Qsky and Usky are the Stokes parameters of the sky, ρ is the HWP orientation angle
and ~θ is the telescope pointing. The HWP orientation and the telescope pointing are time varying
quantities that are discretely sampled and indexed by i. Ultimately, we would like to make separate
maps of Isky, Qsky and Usky. To untangle these quantities, we use a method inspired by the lock-in
amplifier. Multiplying the data by a reference created from the HWP optical encoder data stream

rQ
i = cos(4ρi)

rU
i = sin(4ρi) (5.23)

the time stream becomes

sir
Q
i =

1
4

[
Qsky(~θi) + Qsky(~θi) cos(8ρi) + Usky(~θi) sin(8ρi) + 2Isky(~θi) cos(4ρi)

]

sir
U
i =

1
4

[
Usky(~θi)− Usky(~θi) cos(8ρi) + Qsky(~θi) sin(8ρi) + 2Isky(~θi) sin(4ρi)

]

(5.24)

The trigonometric terms in Equations 5.22 & 5.24 can be filtered away in the frequency domain.

sT
i = 2 Re

(
N−1∑

k=0

(̃si)k Fk ei2πki/N

)

sQ
i = 2 Re

(
N−1∑

k=0

(̃sir
Q
i )k Fk ei2πki/N

)
(5.25)

sU
i = 2 Re

(
N−1∑

k=0

(̃sirU
i )k Fk ei2πki/N

)

The ∼ indicates forward transform

s̃k =
1
N

N−1∑

i=0

si e
−i2πki/N (5.26)

and the reverse transform is written explicitly. If the filter, Fk, is ideally then

sT
i =

Isky(~θi)
2

, sQ
i =

Qsky(~θi)
2

and sU
i =

Usky(~θi)
2

. (5.27)
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Isky, Qsky and Usky are in fact time varying quantities because the telescope is scanning and
the sky signals are spatially anisotropic. As a result, the sky measurements in the frequency
domain have bandwidth, so the filter used in Equation 5.25 needs to be carefully designed to
minimally alter the recorded Stokes parameters and maximally remove the trigonometric terms in
Equations 5.22 & 5.24. To design the appropriate filter, we simulated a MAXIPOL-like experiment
by raster scanning pixelized T , Q and U map realizations [37] and then studied the resulting signal-
only data streams in the frequency domain. The maps we used are illustrated in Figure 5.6. The
raw simulations contain structure smaller than 10′ so as a first step we convolved the maps with a
10′ FWHM Gaussian beam in k-space using two dimensional FFTs. Without this convolution, our
result is misleading because fine structure increases the bandwidth of Isky, Qsky and Usky in the
frequency domain. Stated differently, there is a direct relationship between the beam size and the
cutoff frequency of the low-pass filter we are designing.

To generate the data stream, we first created the telescope pointing data, ~θsim
i , and the HWP

orientation data, ρsim
i . Here we used a 0.1 Hz telescope scan frequency, a 2◦ peak-to-peak scan

amplitude, a 1.9 Hz HWP rotation frequency and a 4.8 ms sample period, which were the values
realized during the MAXIPOL-1 BUM scan. Since the scan throw is 2◦ and the map is 6.4◦ wide,
we rastered only the leftmost 2◦ of the simulation. For every ~θsim

i we created a Stokes vector using
the T , Q and U maps and spline interpolation.

~Ssim
in =

[
T (~θsim

i ), Q(~θsim
i ), U(~θsim

i ), 0
]

(5.28)

This vector was then operated on by the HWP and polarizer Mueller matrices given in Equations 3.6
and 3.35, respectively. Here δ = π, px = 1 and py = 0. The simulated signal-only data stream,
ssim
i , is the Ith element of ~Ssim

out = Mp Mh
~Ssim

in .

The power spectrum of ssim
i , ssim

i rQ
i and ssim

i rU
i are plotted in Figure 5.7 (a). Notice the plot is log-

log. The evident peak structure arises from the fact that the structure on the sky is constructed of
discrete modes; in the frequency domain these modes appear at the harmonics of the telescope scan
frequency. Again, the filter we are designing needs to capture the information at low frequencies
and reject the large features at 4 × 1.9 Hz in all panels and 8 × 1.9 Hz in the middle and bottom
panels. The signal roll-off from the 10′ FWHM Gaussian beam is evident between 1 and 2 Hz.
Unfortunately there is no obvious cutoff frequency that will allow us perfectly harvest one signal
and perfectly reject the other two.

To further elucidate the T , Q and U convolution, we performed the experiment three additional
times using the following input stokes vectors.

~Ssim
in =

[
T (~θsim

i ), 0, 0, 0
]
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Figure 5.6: Sky realizations used to design the band-pass filter used in the signal demodulation software. The raw
T, Q and U maps are displayed in the left column; these maps convolved with a 10′ FWHM Gaussian beam are
displayed in the right column.
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(a)

(b)

Figure 5.7: Power spectrum of signal-only time streams generated by scanning the sky realizations illustrated in
Figure 5.6.
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Figure 5.8: The band-pass filters considered for demodulation presented in the frequency and the time domain.
The red, hashed region in the bottom panel represents the size of a 10′ pixel given a scan speed of 0.4 deg/sec.

~Ssim
in =

[
0, Q(~θsim

i ), 0, 0
]

(5.29)

~Ssim
in =

[
0, 0, U(~θsim

i ), 0
]

The power spectrum of ssim
i , ssim

i rQ
i and ssim

i rU
i resulting from these new data streams are plotted

in Figure 5.7 (b). Now it is more clear how the individual T , Q and U signals contribute to the
power spectra though it is still not clear where we should set the filter cutoff frequency.

In fact, the optimal filter design is an ongoing topic of study. Two primary filters we are considering
are illustrated as the blue and green curves in the top panel of Figure 5.8. Notice these filters are
band-pass filters rather than simple low-pass filters. In the actual MAXIPOL-1 data, spurious
signals contaminate the frequencies below ∼0.1 Hz. Specifically, at these low frequencies, the
T measurements are mixed with detector 1/f noise and scan synchronous noise, while the Q

and U measurements are mixed with instrumental polarization and other time stationary HWP
synchronous signals. For T , Q and U , only map offsets and gradients exist below 0.1 Hz in the
frequency domain anyway. Since MAXIPOL in an anisotropy experiment we have justification for
filtering these sky signals out at this stage.
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The blue curve is a square filter defined

Fk =

{
1 for {k : |fk| ≥ 0.01} ∩ {k : |fk| ≤ 2}
0 for {k : |fk| < 0.01} ∪ {k : |fk| > 2} (5.30)

while the green curve is a single pole high-pass filter and a four pole Butterworth low-pass filter
defined

Fhigh =

ifk

fhigh
knee

1 + ifk

fhigh
knee

(5.31)

Flow =
1[

1 + a1

(
ifk

f low
knee

)
+ b1

(
ifk

f low
knee

)2
] [

1 + a2

(
ifk

f low
knee

)
+ b2

(
ifk

f low
knee

)2
]

Fk = | Flow Fhigh |

with fhigh
knee = 0.01, a1 = 2., a2 = 0.7, b1 = 1.35, b2 = 0.9 and f low

knee = 2.

The time domain representation of these filters is plotted in the bottom panel of Figure 5.8. The
red hashed region illustrates the size of a 10′ sky pixel assuming a 4 deg/sec telescope scan speed.
Clearly the square filter removes the unwanted signals at high frequencies completely, but causes
complicated pixel-pixel noise and signal correlation. The Butterworth filter produces less correlation
but allows more T signal to leak into the Q and U maps. A program to optimally solve this problem
is underway.

For this discussion we choose to demonstrate the viability of the square filter using our simulation
pipeline. Using Equation 5.30 and Equation 5.25 we computed sT

i , sQ
i and sU

i . Using θsim
i we binned

these data and formed pixelized maps with 5′ pixels. The results are plotted in Figure 5.9. The
raw T , Q and U data are plotted in the left column, maps produced from time streams generated
by the demodulation pipeline are plotted in the middle column and their difference is plotted in
the right column. The square filter preserves structure well but not perfectly in all maps. Clearly
T loses power at the largest angular scales. The horizontal bands in the difference maps illustrate
the correlation effect. The conclusion is the method is viable but needs to be optimized.

5.4 Instrumental Signal Estimator

The orange curves in the top and bottom panels of Figure 5.8 show the filter response of a square
band-pass filter in the frequency and time domains, respectively; this filter has a 0.01 Hz high-pass
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Figure 5.9: Demonstration of the demodulation software.
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cutoff and a 10 Hz low-pass cutoff. Comparing the orange curve to the blue curve, it is apparent
that by extending the low-pass filter cutoff to higher frequencies, the time-time and therefore the
pixel-pixel correlations are reduced, which is favorable. We can use Equation 5.25 on

di = si + ni + hi (5.32)

to ascertain sT
i , sQ

i and sU
i but the hi term prevents us from setting the low-pass cutoff much higher

than ∼1.5 Hz. In order to extend the low-pass cutoff to 2 Hz or beyond to decrease correlations
it is necessary to first subtract hi from di before multiplying di by the Q or U reference signal.
Without this subtraction, hi will leak into the T , Q and U maps and produce systematic error.
An algorithm for estimating hi given 3.1 min of time ordered data was presented in Section 5.2.
This procedure assumes the amplitude of each Fourier component in hi is constant in time. In
fact, the amplitudes of the Fourier components change on timescales much greater than 3.1 min.
Ultimately an hi estimator will be integrated into the map making pipeline that will be discussed
in Section 5.5 so it is necessary to extend the usefulness of the existing algorithm so that it can be
used to remove time varying signals as well. In the map making pipeline, data chunks are typically
20 min long with endpoints defined by the calibrator lamp pulses that occurred every ∼20 min
during the MAXIPOL-1 flight. On these time scales, we have empirically determined that the
model

ĥi = ξ +
8∑

x=1

(βxti + βo
x) cos (x ρi + φx) (5.33)

accurately describes the time varying instrumental signals. Notice the amplitude of each Fourier
component varies linearly with time. In sum the model has 25 free parameters that must be
estimated.

As a first step toward estimating ĥi, the binned template is created according to

µα =
1

N ′

N ′−1∑

j′=0

bj′ and σα =

√√√√
N ′−1∑

j′=0

(bj′ − µα)2

N ′(N ′ − 1)
(5.34)

where j′ = {j : mode− 1.5σmode ≤ bα
j ≤ mode + 1.5σmode} and the time stationary model

ĥo
α = ξ +

8∑

x=1

βo
x cos (x ρα + φx) (5.35)

is fit to this template bins using a non-linear least squares gradient expansion algorithm with
convergence criteria set to ∆χ2 = 10−6. The best fit model is plotted in blue over the binned
template in the top panel of Figure 5.2 and the binned template minus the best fit model is plotted
in the bottom panel. Using φx estimated by this fit, we construct a phase-locked sine wave reference
for each Fourier component using the HWP encoder data.

rx
i = cos(xρi + φx) (5.36)
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Figure 5.10: Demonstration of the time varying instrumental signal estimator. The estimate of the simulated
instrumental signal is plotted in the upper left, while the simulation is plotted in the upper right. Their difference
and the power spectrum of their difference are plotted in the lower panels (see Section 5.4).

Now we software lock-in on each Fourier component individually using rx
i and this square low-pass

filter

Fk =

{
1 for {k : |fk| > 1.5}
0 for {k : |fk| ≤ 1.5} (5.37)

Post lock-in we fit a line to the data to ascertain βx and βo
x and then construct ĥi.

This operation is conducted in the presence of detector noise so ĥi truly is an estimate.

di = si + ni + hi − ĥi 6= si + ni (5.38)

The hi - ĥi residual must be ¿ sT
i , sQ

i and sU
i in order to make a detection. To test the viability

of the algorithm and to determine the magnitude of the residual, we simulated a MAXIPOL-like
experiment with si equal to the Ith element of ~Ssim

out = MpMh
~Ssim

in (see Section 5.3), hi equal
to Equation 5.33 employing realistic parameter values and ni generated in the frequency domain
according to the prescription outlined in Appendix B. Here the white noise level is 1 nV/

√
Hz

and the calibration is 2 × 104 K/V. The raw T , Q and U sky simulations are plotted in the left
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Figure 5.11: Demonstration of the viability of the time varying instrumental signal estimator. Simulated T , Q and
U realizations are plotted in the left column. Maps of these signals output from the simulation pipeline are plotted
in the right column. Using a white noise level of 1 nV/

√
Hz and a responsivity of 2 × 104 K/V, the instrumental

signal residual is smaller than the Q and U sky signals.
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column of Figure 5.11 and the recovered signals plotted in the right column. Clearly the spatial
structure is recovered nicely. In Figure 5.10, ĥi and hi are plotted in the upper left and upper right,
respectively, while their difference is plotted in the lower left.

This test suggests the algorithm is viable. However, the noise level used in the simulation is
lower than the nominal MAXIPOL noise level by a factor of 10. If the noise is increased to realistic
levels, the hi - ĥi residual becomes the dominant signal in the recovered Q and U maps. Developing
methods for more accurately estimating hi is an ongoing area of research.

5.5 T, Q and U Maps

A schematic representation of the pipeline used to compute the T , Q and U maps presented in
Figure 5.14 is illustrated in Figure 5.12. All of the tools discussed in this chapter contribute to this
algorithm. Starting with the raw data from one photometer

di = si + ni + hi + gi (5.39)

the transient signals, gi, are flagged using the procedure discussed in Section 5.2 and illustrated in
Figure 5.1 on a file-by-file basis. Here the flag array is

fi =

{
1 for i with transients
0 for i without transients

(5.40)

Post transient flagging the data arrays from all files are concatenated. These concatenated arrays
are then broken into long data chunks with endpoints defined by calibrator lamp pulses, ADR
current ramps or HWP motor speed instabilities; the typical chunk length is ∼20 min. For each
chunk, a first estimate of hi is subtracted from di

di = si + ni + gi + hi − ĥ1
i (5.41)

Using the flag array, gi is removed from di and a straight line with endpoints matching the generated
gap endpoints, plus a simulated noise realization is added. The ĥ1

i estimate is added back to the
time stream to reproduce

di = si + ni + hi for { i : fi = 0 } (5.42)

and create
di = si + nsim

i + ĥ1
i for { i : fi = 1 } (5.43)
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Collection of Raw Data Arrays

One Data Chunk

HWP Encoder Data Raw Bolometer Data

Instrumantal Signal Estimator

Fill Gaps

Difference

Combine

Demodulate

Instrumental Signal Estimate 1 Difference

Add Sky Rotation Phase Drift

Map Making

T, Q and U Time Streams

Final Data Products

Telescope PointingFlags Array

Instrumantal Signal Estimator

Instrumental Signal Estimate 2

Fill Gaps

T, Q and U Maps

Figure 5.12: Schematic representation of the T , Q and U map making pipeline.
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Now a more accurate hi estimate is computed and then subtracted from this new clean di to produce

di = si + ni + hi − ĥ2
i for { i : fi = 0 } (5.44)

di = si + nsim
i + ĥ1

i − ĥ2
i for { i : fi = 1 } (5.45)

The sky rotated significantly over the course of the MAXIPOL-1 BUM scan so we can not make
the stationary sky assumption and model si as Equation 5.46 for this analysis. A more accurate
model is the Ith element of ~Sout = M̂p M̂h M̂r

~Ssky,

si =
1
2

[
Isky(~θi) + Qsky(~θi) cos(4ρi + 2βi) + Usky(~θi) sin(4ρi + 2βi)

]
(5.46)

where Mh and Mp are the Mueller matrices for the HWP (Equation 3.6) and focal plane polarizer
(Equation 3.35), respectively, and Mr is the Mueller matrix for counter-clockwise rotation written

M̂r =




1 0 0 0
0 cos(2β) sin(2β) 0
0 − sin(2β) cos(2β) 0
0 0 0 1




(5.47)

Here, δ = π, px = 1, py = 0 and β is the rotation angle produced by the moving sky. β is referenced
to a unit vector that points from a patch of sky in the observed region to the north celestial pole
(NCP). This unit vector can be computed using the recorded telescope attitude.

~n = ~l × ~g ×~l

sin(90− δ)
~h = ~l × ~z ×~l

sin(90− el)
(5.48)

The unit vectors~l, ~g and ~z point from the telescope to the observation, NCP and zenith, respectively.
The rotation angle of interest is subsequently computed β = cos−1(~n · ~h) [33, 34].

To produce sT
i , sQ

i and sU
i we use Equation 5.25, the references

rQ
i = cos(4ρi + 2βi)

rU
i = sin(4ρi + 2βi) (5.49)

and the square band-pass filter

Fk =

{
1 for {k : |fk| ≥ 0.01} ∩ {k : |fk| ≤ 2}
0 for {k : |fk| < 0.01} ∪ {k : |fk| > 2} (5.50)

To eliminate the noise correlations this filter produces, we create frequency domain noise realiza-
tions, ñT

k , ñQ
k and ñU

k , according to Equations B.3 & B.4. The white noise level of these realizations,
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σ, is matched to the white noise level of di. Now we transform di, dir
Q
i and dir

U
i to the frequency

domain.

d̃T
k =

1
N

N−1∑

i=0

di e
−i2πki/N

d̃Q
k =

1
N

N−1∑

i=0

dir
Q
i e−i2πki/N (5.51)

d̃U
k =

1
N

N−1∑

i=0

dir
Q
i e−i2πki/N

and then we redefine

ñT
k′ = d̃T

k′

ñQ
k′ = d̃Q

k′ (5.52)

ñU
k′ = d̃U

k′

k′ = {k : |fk| ≥ 0.01} ∩ {k : |fk| ≤ 2} (5.53)

Now the T , Q and U time streams are computed by transforming the noise realizations doped with
the actual sky signals back to the time domain.

dT
i = 2Re

(
N−1∑

k=0

ñT
k Fk ei2πki/N

)

dQ
i = 2Re

(
N−1∑

k=0

ñQ
k Fk ei2πki/N

)
(5.54)

dU
i = 2Re

(
N−1∑

k=0

ñU
k Fk ei2πki/N

)

Once we have dT
i , dQ

i and dU
i , we create a pixelized map

mT
p =

1
N ′

N ′−1∑

i′=0

dT
i′ mQ

p =
1

N ′

N ′−1∑

i′=0

dQ
i′ mU

p =
1

N ′

N ′−1∑

i′=0

dU
i′ (5.55)

with pixel variance,

vT
p =

N ′−1∑

i′=0

(dT
i′ −mT

p )2

N ′ − 1
vQ
p =

N ′−1∑

i′=0

(dQ
i′ −mQ

p )2

N ′ − 1
vU
p =

N ′−1∑

i′=0

(dU
i′ −mU

p )2

N ′ − 1
(5.56)

and the pixel error,

σT
p =

√
vT
p

N ′ σQ
p =

√
vQ
p

N ′ σU
p =

√
vU
p

N ′ (5.57)
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using the telescope pointing data, ~θ(ri, δi).

i′ = {i : rmin
p ≤ ri < rmax

p } ∩ {i : δmin
p ≤ δi < δmax

p } (5.58)

5.6 Combining Maps from Different Photometers

When combining the maps, we weighted the contribution of every photometer by the number of
samples it contributed to any given pixel. The combine map therefore is

MT
p =

12∑

x=1

(
mT

p

)x
Nx

p

12∑

x=1

Nx
p

MQ
p =

12∑

x=1

(
mQ

p

)x
Nx

p

12∑

x=1

Nx
p

MU
p =

12∑

x=1

(
mU

p

)x
Nx

p

12∑

x=1

Nx
p

(5.59)

with the pixel error

σT
p =

√√√√√√√√√√

12∑

x=1

(
N ′−1∑

i′=0

(
dT

i′
)2

)x

12∑

x=1

Nx
p

−MT
p

√√√√
12∑

x=1

Nx
p

σQ
p =

√√√√√√√√√√

12∑

x=1

(
N ′−1∑

i′=0

(
dQ

i′

)2
)x

12∑

x=1

Nx
p

−MQ
p

√√√√
12∑

x=1

Nx
p

(5.60)
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σU
p =

√√√√√√√√√√

12∑

x=1

(
N ′−1∑

i′=0

(
dU

i′
)2

)x

12∑

x=1

Nx
p

−MU
p

√√√√
12∑

x=1

Nx
p

Here, x is a label that links data elements to the photometer that produced that data. The MT
p ,

MQ
p and MU

p maps are plotted in the left column of Figure 5.14 while MT
p /σT

p , MQ
p /σQ

p and MU
p /σU

p

are plotted in the right column. The value of the null buster statistic

χ2 =
M2

p

N σ2
p

(5.61)

is printed in the lower left corner of the maps in the left column. Histograms of these maps are
plotted in Figure 5.13.
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Figure 5.13: Histograms of the pixel values of the T , Q and U maps plotted in Figure 5.14.



71

Figure 5.14: Preliminary maps from the MAXIPOL-1 observation near Beta Ursae Minoris. The T , Q and U maps
are plotted in the left column while corresponding maps of the pixel mean divided by the pixel error are plotted in
the right column (Section 5.6).



Chapter 6

The Future: B-Mode Characterization

6.1 Introduction

The recent detection of the E-mode and TE signals at the theoretically expected level justifies full
characterization of the E-mode power spectrum and further exploration for the anticipated B-mode
signals. This exploration calls for a new class of millimeter-wave polarimetric instrumentation to be
developed with high receiver sensitivity and minimized, tractable systematic error. MAXIPOL has
already made significant steps toward developing the necessary instrumentation by implementing
polarimetry techniques that can be directly applied to a B-mode experiment.

6.2 B-mode Experiment Characteristics

At this stage B-mode instrument design is unconstrained; novel ideas aimed at increasing receiver
sensitivity and reducing systematic error can and should be considered. However, for this discus-
sion, I will assume the starting point pioneered by experiments like MAXIPOL and embraced by
burgeoning experiments like QUaD and EBex: use of reflective telescope optics and a bolometric
polarimeter employing a rotating half-wave plate and a fixed wire-grid polarizer. An instrument
constructed following this prescription would be used to map the I, Q and U Stokes parameters of a
two-dimensional patch of the sky by scanning the telescope appropriately in azimuth and elevation.

Clearly distinguishing primordial polarization from instrumental artifacts will require unprece-
dented control of systematic errors. Spurious instrumental signals will dominate the sky signals in
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any B-mode experiment so all avoidable instrumental offsets should be preemptively identified and
designed away, and all unavoidable instrumental offsets must be precisely known and designed to
be tractable during data analysis. The principal issues associated with B-mode instrumentation
are introduced and briefly described below. The following list outlines the topics that must be
addressed during any instrument design process.

• Increase Receiver Sensitivity
The noise equivalent power (NEP) of state-of-the-art millimeter-wave bolometers has reached
a fundamental limit – the NEP is dominated by photon noise from the sky; therefore to achieve
the necessary receiver sensitivity, we must extrapolate from the receiver status quo (MAX-
IPOL for example), increasing either the total number of detectors or the integration time
per beam resolution element – or both. Future detector arrays will likely employ hundreds
or even thousands of detector elements.

• Minimize Systematic Errors from the Telescope Optics
Reflective telescope optics can create and/or modify partially polarized light through differ-
ential emission (create spurious Q and U signals), differential absorption (convert incoming
T to Q or U) and cross-polarization (convert E to B). For typical systems, the emission and
absorption effects produce signals that are roughly ∼1% polarized, which is large compared
to the CMB signals. The telescope cross-polarization properties will need to be known to
high accuracy to correctly measure the E- and B-mode power spectra. All of these effects can
be minimized with careful optical design, such as use of an on-axis or Dragone system.

• Monitor Foreground Signals
Beyond the gravitational lensing foreground mentioned in Chapter 1, atmospheric polariza-
tion [27] and polarized emission from galactic dust must also be carefully considered. Dust
emission can be monitored with spectral discrimination while atmospheric signals may require
implementation of polarimetric hardware tuned to the polarized 118 GHz oxygen lines. Cir-
cularly polarized atmospheric signals can be measured with a polarimeter utilizing a rotating
quarter-wave plate, for instance.

• Select Appropriate Beam Size and Symmetry
The beam size must be set to ∼5′ to resolve the non-primordial B-mode signal at high `; horns
with symmetric beam patterns are essential as the mixture of sky rotation and asymmetric
beams produces systematic error; and the horns must preserve the polarization properties of
the sky signals precisely if polarization sensitive bolometers are to be used.

• Reduce Systematic Errors from Polarimetry Hardware
The mechanism for rotating the 4 K HWP tends to induce spurious microphonic signals
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Figure 6.1: Expected polarimeter efficiency as a function of frequency for a HWP polarimeter and two AHWP
polarimeters. The green, dash-dot curve illustrates the behavior of the HWP polarimeter, the red, solid curve the
AHWP polarimeter employing three HWPs (δ2 = 58◦ and δ3 = 0◦) and the blue, dash curve an AHWP polarimeter
employing five HWPs (δ2,4 = 70◦ and δ3,5 = 0◦).

through mechanical vibrations. The MAXIPOL example is one viable brute-force solution;
another more elegant solution is a superconducting magnetic bearing, which promises fewer
instrumental offsets and lower detector noise [28]. Optically, the overall polarimeter efficiency
can be improved with the use of an achromatic HWP with achromatic anti-reflection coatings.
Design and optimization of the achromatic HWP will be discussed in Section 6.3.
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6.3 Achromatic Half-Wave Plate

In Chapter 3 we showed that the breadth of the spectra of the MAXIPOL 140 GHz photometers
decreases the overall polarimeter efficiency to ∼90%. This inefficiency can be decreased by nar-
rowing the band-pass filters. However, this action also decreases the number of photons reaching
the detectors, which is unfavorable. A better solution is to keep the broad spectra and employ an
achromatic HWP (AHWP).

The AHWP is made of a series of retarders, each tuned to be a HWP for the center frequency of
the desired spectral band. The relative orientation of these crystals is appropriately set to one of
many viable prescriptions. Specifically, we studied designs employing three and five HWPs and
placed emphasis on optimizing the three HWP construction.

The Mueller matrix for a linear retarder as a function of orientation angle and frequency, M̂h(ρ, ν),
is given in Equation 3.6. In principal, the expected performance of the AHWP can be determined
analytically by calculating the measured level polarization as a function of frequency

Pout(ν) =
~SImax

out − ~SImin
out

~SImax
out + ~SImin

out

(6.1)

by using the Ith term of the output Stokes vector

M̂p

[
M̂h(ρ + δ3, ν) M̂h(ρ + δ2, ν) M̂h(ρ, ν)

]
~Sin = ~Sout (6.2)

Here, M̂p is the Mueller matrix for a polarizer given in Equation 3.35, Sin = [1,1,0,0] for all ν

and δ2,3 are the orientation angles of the second and third HWPs in the stack with respect to the
orientation of the first. ~SImax

out and ~SImin
out are determined with the derivative of ~SI

out

∂~SI
out(ρ, ν)
∂ρ

= 0 (6.3)

In practice, it is much easier to calculate Pout(ν) numerically. Figure 6.1 shows the result of
a numerical calculation. For a given frequency, ν, ρ was stepped discretely between 0 and 180
degrees in 1 degree steps. ~SImax

out and ~SImin
out were determined by fitting the model

m = A sin (4ρ + φ) + B (6.4)

to this data set. Here we used a gradient expansion algorithm to compute the non-linear least
squares fit with no weighting – convergence criteria set to ∆χ2 = 1× 10−6. Now,

~SImax
out = B + A and ~SImin

out = B −A (6.5)

Pout(ν) is then calculated using Equation 6.1. Here the δ2 = 58◦ and δ3 = 0◦.
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6.3.1 Optimize AHWP with Three Retarders

To explore how the performance of a polarimeter employing an AHWP comprised of three retarders
depends on crystal orientation, we computed Pout vs. ν between 100 and 200 GHz for a grid of δ2

and δ3 angles. For this grid 0 ≤ δ2 ≤ 90 and 0 ≤ δ3 ≤ 90; step size was equal to 1◦. At each grid
point, the area under the Pout vs. ν curve was calculated numerically to quantitatively determine
the breadth of the window, and the average deviation from Pout = 1 was determined in the band
150 ± 15 GHz. The results are plotted in Figure 6.2. Clearly there are many viable three-retarder
AHWP prescriptions.

Figure 6.2: An optimization of an AHWP utilizing three retarders.

6.3.2 Optimize AHWP with Five Retarders

Optimizing a five retarder AHWP polarimeter in a similar way is more difficult because 65.6 million
calculations are required rather than just the 8100 required for Figure 6.2. Applying the constraints
δ2 = δ4 and δ3 = δ5 = 0◦ simplifies the calculation considerably while still yielding useful results.
δ2,4 was varied between 0 and 180◦ and the optimization statistics used as the figures of merit in
Section 6.3.1 were computed. The results are plotted as the red curve in Figure 6.3. For comparison,
the results from a three retarder analysis are also plotted as the blue curve. Here, δ2 varies and δ3

= 0◦.
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Figure 6.3: Optimization of a five retarder AHWP polarimeter (Section 6.3.2).



Appendix A

Computing the Power Spectrum of

Time Ordered Data

A.1 Introduction

The power spectrum is a useful tool for analyzing time ordered data. Numerical methods for
computing power spectra are covered extensively in the literature. However, distilling the relevant
information from books like Numerical Recipes in C for MAXIPOL data analysis requires some
effort. To date, there is no document publicly available within the MAXIPOL collaboration that
comprehensively covers the MAXIPOL-specific details of actually computing the power spectrum of
time ordered data correctly. Therefore, it is useful to form this document by compiling the collective
knowledge of the collaboration into one concise record so the task of mining this information will
not have to be repeated by future graduate students and postdocs.

I will assume the reader is familiar with both the IDL programming language and the text Numerical
Recipes in C. These assumptions are fair for this discussion because IDL is the de facto programming
standard in the collaboration today and copies of Numerical Recipes in C are commonly available.
When it is useful, I will make reference to specific chapters and pages in Numerical Recipes in C
or specific entries in the IDL documentation.
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A.2 The FFT

At the heart of the power spectrum lies the FFT. IDL comes with an FFT function built in which
is defined as

d̃k =
1
N

N−1∑

t=0

dt e−i2πkt/N (A.1)

dt =
N−1∑

k=0

d̃k ei2πkt/N (A.2)

for the forward and reverse transform, respectively. Here d is the uniformly sampled time ordered
data indexed by t, d̃ is the FFT of d indexed by k and N is the total number of samples. The data
vector in the time domain and its FFT will have the same number of elements; the time domain
vector is real while the FFT is complex.

The FFT computation time is roughly proportional to N times the sum of the prime factors of N

[38]. For example, if N = 263, the prime factors of N are 1 and 263 so the computation time is
proportional to 263(1+263) = 69,432. If N = 264, the prime factors of N are 2, 2, 2, 3 and 11
so the computation time is proportional to 264(2+2+2+3+11) = 5,280. Notice the computation
time for the longer 264 element array is 13.15 times shorter than the computation time for the
263 element array! In general, computing the FFT of arrays with a prime number of elements will
require more computation time than other arrays with similar length. The number of elements
in the time ordered data array must be considered when computing the power spectrum of long,
MAXIPOL-like arrays because the computation time may become impractical (arrays can have
over one million elements). If N = 1,048,583 (a prime number) one might choose to drop 7 samples
so that N = 1,048,576 = 220. The computation time would be shorter by a factor of ∼26,000. In
general, a good strategy is to make the data array have 2x elements because the only prime factor
of 2x is 2 so the sum of the prime factors is 2x, a relatively small number – even for large N . If
making the data array have 2x elements is too tedious, the next best strategy is to make the array
have an even number of elements because prime numbers should be avoided and all prime numbers
> 2 are odd numbers. The structure of the FFT array is different for N = even and N = odd.
Since using an odd number of elements is so unfavorable, this discussion will assume that N will
always be even. The storage scheme for d̃k with N = even is illustrated in Figure A.1.
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Figure A.1: The FFT storage scheme.

A.3 The Periodigram

The ultimate goal of this effort is to produce a periodigram estimate of the power spectrum between
f=0 and f=fNyquist which can be integrated to yield the mean squared amplitude of the time
ordered data. The Nyquist frequency, fNyquist= 1

2∆ where ∆ is the sampling period. Numerical
Recipes in C defines the periodigram estimate as

Pk′=0 = | d̃k′=0 |2

Pk′ = [ | d̃k′ |2 + | d̃N−k′ |2] (A.3)

Pk′=N/2 = | d̃k′=N/2 |2

where k′ = 1, 2, ..., (N
2 − 1) [39]. For clarity, the index k′ runs from 0 to N

2 while k runs from
0 to N -1. From the storage scheme illustrated in Figure A.1 it is clear the 0th element of Pk′

corresponds to the frequency f = 0 and the N
2 th element corresponds to f=fNyquist.

A.4 Normalization

Truly, the central issue of this discussion is the power spectrum normalization. Again, the goal is
to produce a power spectrum estimate that can be integrated to yield the mean squared amplitude
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of the data. Expressed differently,

∆f

N/2∑

k′=0

Pk′ =
1
N

N−1∑

t=0

|dt|2 (A.4)

where Pk′ is the power spectrum estimate we are searching for and ∆f= 1
N∆ . Parseval’s theorem

states that

1
N

N−1∑

t=0

|dt|2 =
N−1∑

k=0

|d̃k|2 (A.5)

Equation A.3 is really just a different storage scheme for the squared modulus of d̃ so

N−1∑

k=0

|d̃k|2 =
N/2∑

k′=0

Pk′ (A.6)

Combining EquationA.4, EquationA.5 and EquationA.6,

∆f

N/2∑

k′=0

Pk′ =
N/2∑

k′=0

Pk′ (A.7)

and
Pk′ =

1
∆f

Pk′ (A.8)

Example IDL Code

N = long(38400.)

delta_t = 4.8e-3 ; [sec]

delta_nu = 1./(double(N)*delta_t) ; [Hz]

f_nyquist = 1./(2.*delta_t) ; [Hz]

d = randomn(seed,N)

frequency = delta_nu*dindgen(N)

frequency[(N/2)+1:N-1] = (-1)*reverse(frequency[1:(N/2)-1])

d_tilde = fft(d,-1,double=1)

P = dblarr( (N/2)+1 )

P[0] = abs(d_tilde[0])^2

P[1:(N/2)-1] = abs(d_tilde[1:(N/2)-1])^2 +
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reverse( abs(d_tilde[(N/2)+1:N-1])^2 )

P[N/2] = abs(d_tilde[N/2])^2

P_script = sqrt(P/delta_nu)

f = frequency[0:N/2]



Appendix B

Noise Realization

To make meaningful simulations, often times it is necessary to include noise realizations with
frequency domain properties that closely resemble the properties of the actual instrument noise. In
general, the MAXIPOL detector noise can be described by the power spectrum

mk = σ

[
1 +

(
fknee

fk

)α]
(B.1)

for the frequencies

fk =
k

N ∆t
where k = 1, 2, . . . ,

N

2
(B.2)

Here we have 1/fα and white noise with σ, the white noise level in V/
√

Hz, and fknee, the frequency
where the 1/f noise and the white noise are equivalent. N is the number of elements in the discretely
sampled time ordered data and ∆t is the sample period.

To create a noise realization that has the desired power spectrum, we build by hand its FFT in the
frequency domain. For this prescription, we require that the number of samples, N , be an even
number and we use the FFT storage scheme illustrated in Figure A.1.

Re (ñk) =
√

∆f m2
k

2 GR
k

Im (ñk) =
√

∆f m2
k

2 GI
k

ñN−k = ñ∗k





k = 1, 2, . . . ,
N

2
− 1 (B.3)
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Here, ∆f = 1
N ∆t , while GR

k , GI
k and G are Gaussian random variables with standard deviation

equal to 1. Now we set the f = 0 and f = fNyquist elements individually. Notice they are real.

ñk=0 = ξ (B.4)

ñk=N/2 =
√

∆f

2
σ

[
1 +

(
fknee

fNyquist

)α]
G , fNyquist =

1
2∆t

The DC offset, ξ, is typically chosen to be 0 though it can be arbitrarily set. Now the frequency
domain FFT is complete. To generate the time domain noise realization we simply reverse FFT
ñk.

nt = Re

(
N−1∑

k=0

d̃k ei2πkt/N

)
(B.5)

Sample IDL Code

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

function maxipol noise, length

; AUTHOR: B. Johnson

; DATE: December 20, 2003

; This IDL code creates a simulated noise time stream composed

; of white noise and 1/f noise. The white noise level, the 1/f

; knee and alpha are set to values that were realized by a

; typical channel in the MAXIPOL receiver.

; INPUT: length of time stream that will be created

; OUTPUT: vector containing a noise realization embracing the prescribed

; power spectrum.

; Define some necessary constants

length = long(length) ; length must be an even number

N = double(length)

delta t = 4.8e-3 ; [sec] -- sample period

nyquist = 1./(2.*delta t) ; [Hz] -- nyquist frequency

delta nu = 1./(N*delta t) ; [Hz] -- FFT frequency resolution
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; Create a frequency array companion for the fft.

frequency = delta nu*dindgen(length)

frequency[(length/2)+1:length-1] = (-1)*reverse(frequency[1:(length/2)-1])

; Define the noise model.

; NOTE: this is model of the noise power spectrum with familiar units.

white noise = 10.e-9 ; [V/sqrt(Hz)]

fknee = 0.2 ; [Hz]

alpha = 1.4

dc offset = 0. ; [V]

model = white noise*( 1. + (fknee/frequency[1:(length/2)-1])âlpha )

; Create a complex array that will be populated with frequency domain noise.

fnoise = dcomplexarr(length)

; By hand create the real and imaginary parts of the fft array that

; will ultimately be reverse ffted to create the noise time stream.

; The delta nu term converts the model into an array that is

; cosistent with Parseval’s Theorem. The sqrt(2) divides the power

; into the real and imaginary parts of the fft correctly.

real = sqrt(delta nu*model2̂/2.)*randomn(seed,(length/2)-1)*(1./sqrt(2.))

imag = sqrt(delta nu*model2̂/2.)*randomn(seed,(length/2)-1)*(1./sqrt(2.))

; Populate the fft array for both positive and negative frequencies.

; NOTE: real(fft[+f]) = real(fft[-f])

; imaginary(fft[+f]) = -imaginary(fft[-f])

fnoise[1:(length/2)-1] = dcomplex(real,imag)

fnoise[(length/2)+1:length-1] = dcomplex(reverse(real),(-1)*reverse(imag))

; Set the zero frequency and nyquist frequency elements of the fft by hand.

temp = (sqrt(delta nu)*white noise*(1.+(fknee/nyquist)âlpha))*$

randomn(seed,1)

fnoise[length/2] = dcomplex(temp,0.)

fnoise[0] = dcomplex(dc offset,0.)

; Reverse fft the array and create the noise time stream. Use only

; the real part of the reverse ffted array.

noise = double( fft(fnoise,1) )
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return, noise

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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